Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuo Ebina is active.

Publication


Featured researches published by Yasuo Ebina.


Nature Materials | 2015

Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel

Youn Soo Kim; Mingjie Liu; Yasuhiro Ishida; Yasuo Ebina; Minoru Osada; Takayoshi Sasaki; Takaaki Hikima; Masaki Takata; Takuzo Aida

Electrostatic repulsion, long used for attenuating surface friction, is not typically employed for the design of bulk structural materials. We recently developed a hydrogel with a layered structure consisting of cofacially oriented electrolyte nanosheets. Because this unusual geometry imparts a large anisotropic electrostatic repulsion to the hydrogel interior, the hydrogel resisted compression orthogonal to the sheets but readily deformed along parallel shear. Building on this concept, here we show a hydrogel actuator that operates by modulating its anisotropic electrostatics in response to changes of electrostatic permittivity associated with a lower critical solution temperature transition. In the absence of substantial water uptake and release, the distance between the nanosheets rapidly expands and contracts on heating and cooling, respectively, so that the hydrogel lengthens and shortens significantly, even in air. An L-shaped hydrogel with an oblique nanosheet configuration can thus act as a unidirectionally proceeding actuator that operates without the need for external physical biases.


Nature | 2015

An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets

Mingjie Liu; Yasuhiro Ishida; Yasuo Ebina; Takayoshi Sasaki; Takaaki Hikima; Masaki Takata; Takuzo Aida

Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.


ACS Nano | 2009

Construction of highly ordered lamellar nanostructures through Langmuir-Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties.

Kosho Akatsuka; Masa-aki Haga; Yasuo Ebina; Minoru Osada; Katsutoshi Fukuda; Takayoshi Sasaki

Exfoliated unilamellar titania nanosheets of Ti(0.87)O(2) with a lateral size of 10-30 microm were deposited layer-by-layer onto various substrates by Langmuir-Blodgett procedure to produce a highly ordered lamellar nanofilms. The nanosheets dispersed in an aqueous suspension containing quaternary ammonium ions as a supporting electrolyte floated spontaneously at the air/liquid interface, and they were successfully transferred onto the substrate after surface compression. Neat tiling of the nanosheets could be realized at an optimized surface pressure. The film thus obtained was exposed to UV light to turn the substrate surface hydrophilic, which was helpful for stable repetition of monolayer deposition. Layer-by-layer growth was confirmed by UV-visible absorption spectra, which showed progressive enhancement of an absorption band due to the nanosheet. Cross-sectional transmission electron microscopy images visualized the ultrathin film homogeneously deposited on the substrate surface and a lamellar fringe of the layer-by-layer assembled nanosheets was clearly resolved at a higher magnification. X-ray diffraction data on the films showed sharp basal reflections up to the seventh order, and Williamson-Hall analysis of the pattern indicated that the film was coherent across the total thickness with respect to X-ray and that the lattice strain was extremely small. In addition, the first basal reflection was accompanied by small satellite peaks, which are accounted for by the Laue interference function. All these features clearly indicate the formation of a highly ordered lamellar nanostructure of the titania nanosheets comparable to artificial lattice films produced via modern vapor-phase deposition processes. The obtained films showed superior dielectric and insulating properties as a reflection of the highly organized film nanoarchitecture.


Langmuir | 2008

Water-Swellable MgAl−LDH (Layered Double Hydroxide) Hybrids: Synthesis, Characterization, and Film Preparation

Nobuo Iyi; Yasuo Ebina; Takayoshi Sasaki

LDH hybrids were synthesized from Cl (-)MgAl-LDHs by anion exchange with short-chain alkyl carboxylate intercalants: C n H 2 n+1 COO (-) ( n = 0-3). Among them, LDH3 (LDH with Mg/Al = 3) hybrids containing acetate ( n = 1) and propionate ( n = 2) exhibited swelling behavior in water. The action of water on acetate-LDH3 (AcO-LDH3) and propionate-LDH3 (PrO-LDH3) led to semitransparent suspensions via a viscous gel state. From the X-ray diffraction profiles of the gels, only a broad feature was observed by the loss of the sharp reflections. The reflections reappeared for the films obtained by drying the gel, indicating the restacking of the LDH nanosheets into the original stacked structure. Observation using atomic force microscopy revealed delaminated nanosheets with a thickness of 1.1-1.5 nm with the same morphological features as the starting LDHs. XRD measurement and AFM observation supported the formation of unilamellar LDH sheets. Semitransparent self-standing LDH films were obtained by peeling off the films formed on a PE (polyethylene) substrate by drying the colloidal suspension thereon. The thickness of the obtained flexible films ranged from 10 to 25 microm, and they could be anion exchanged with inorganic and organic anions in the film state.


Solid State Ionics | 2002

Study on exfoliation of layered perovskite-type niobates

Yasuo Ebina; Takayoshi Sasaki; Mamoru Watanabe

Abstract A layered niobate, HCa 2 Nb 3 O 10 ·1.5H 2 O, was treated with a tetrabutylammonium hydroxide (TBAOH) solution to promote delamination, which produced opalescent colloidal suspension. A wavy profile of X-ray scattering from the colloidal aggregates showed close matches to the calculated structure factor, F 00 l ( θ ). Their electron diffraction pattern indicated a two-dimensional periodicity for the perovskite linkage and diffuse scattering along the sheet normal. These results lead to the conclusion that layered perovskite can be delaminated to exfoliated monolayer particles of the perovskite.


ACS Nano | 2008

Exfoliated Nanosheet Crystallite of Cesium Tungstate with 2D Pyrochlore Structure: Synthesis, Characterization, and Photochromic Properties

Katsutoshi Fukuda; Kosho Akatsuka; Yasuo Ebina; Renzhi Ma; Kazunori Takada; Izumi Nakai; Takayoshi Sasaki

Layered cesium tungstate, Cs(6+x)W(11)O(36), with two-dimensional (2D) pyrochlore structure was exfoliated into colloidal unilamellar sheets through a soft-chemical process. Interlayer Cs ions were replaced with protons by acid exchange, and quaternary ammonium ions were subsequently intercalated under optimized conditions. X-ray diffraction (XRD) measurements on gluelike sediment recovered from the colloidal suspension by centrifugation showed a broad pattern of a pronounced wavy profile, which closely matched the square of calculated structure factor for the single host layer. This indicates the total delamination of the layered tungstate into nanosheets of Cs(4)W(11)O(36)(2-). Microscopic observations by transmission electron microscopy and atomic force microscopy clearly revealed the formation of unilamellar crystallites with a very high 2D anisotropy, a thickness of only approximately 2 nm versus lateral size up to several micrometers. In-plane XRD analysis confirmed that the 2D pyrochlore structure was retained. The colloidal cesium tungstate nanosheet showed strong absorption of UV light with sharp onset, suggesting a semiconducting nature. Analysis of the absorption profile provided 3.6 eV as indirect band gap energy, which is 0.8 eV larger than that of the bulk layered precursor, probably due to size quantization. The nanosheet exhibited highly efficient photochromic properties, showing reversible color change upon UV irradiation.


ACS Nano | 2010

Robust High-κ Response in Molecularly Thin Perovskite Nanosheets

Minoru Osada; Kosho Akatsuka; Yasuo Ebina; Hiroshi Funakubo; Kanta Ono; Kazunori Takada; Takayoshi Sasaki

Size-induced suppression of permittivity in perovskite thin films is a fundamental problem that has remained unresolved for decades. This size-effect issue becomes increasingly important due to the integration of perovskite nanofilms into high-κ capacitors, as well as concerns that intrinsic size effects may limit their device performance. Here, we report a new approach to produce robust high-κ nanodielectrics using perovskite nanosheet (Ca2Nb3O10), a new class of nanomaterials that is derived from layered compounds by exfoliation. By a solution-based bottom-up approach using perovskite nanosheets, we have successfully fabricated multilayer nanofilms directly on SrRuO3 or Pt substrates without any interfacial dead layers. These nanofilms exhibit high dielectric constant (>200), the largest value seen so far in perovskite films with a thickness down to 10 nm. Furthermore, the superior high-κ properties are a size-effect-free characteristic with low leakage current density (<10(-7) A cm(-2)). Our work provides a key for understanding the size effect and also represents a step toward a bottom-up paradigm for future high-κ devices.


ACS Nano | 2010

Engineered interfaces of artificial perovskite oxide superlattices via nanosheet deposition process.

Bao Wen Li; Minoru Osada; Tadashi C. Ozawa; Yasuo Ebina; Kosho Akatsuka; Renzhi Ma; Hiroshi Funakubo; Takayoshi Sasaki

Combining different materials into desired superlattice structures can produce new electronic states at the interface and the opportunity to create artificial materials with novel properties. Here we introduce a new, rather unexpected, and yet simple way to such a superlattice assembly of perovskite oxides: in the Dion-Jacobson phase, a model system of layered perovskites, high-quality bicolor perovskite superlattices (LaNb(2)O(7))(nL)(Ca(2)Nb(3)O(10))(nC) are successfully fabricated by a layer-by-layer assembly using two different perovskite nanosheets (LaNb(2)O(7) and Ca(2)Nb(3)O(10)) as a building block. The artificially fabricated (LaNb(2)O(7)/Ca(2)Nb(3)O(10)) superlattices are structurally unique, which is not feasible to create in the bulk form. By such an artificial structuring, we found that (LaNb(2)O(7)/Ca(2)Nb(3)O(10)) superlattices possess a new form of interface coupling, which gives rise to ferroelectricity.


Nature Communications | 2013

Unusually stable ~100-fold reversible and instantaneous swelling of inorganic layered materials

Fengxia Geng; Renzhi Ma; Akira Nakamura; Kosho Akatsuka; Yasuo Ebina; Yusuke Yamauchi; Nobuyoshi Miyamoto; Yoshitaka Tateyama; Takayoshi Sasaki

Cells can swell or shrink in certain solutions; however, no equivalent activity has been observed in inorganic materials. Although lamellar materials exhibit increased volume with increase in the lamellar period, the interlamellar expansion is usually limited to a few nanometres, with a simultaneous partial or complete exfoliation into individual atomic layers. Here we demonstrate a large monolithic crystalline swelling of layered materials. The gallery spacing can be instantly increased ~100-fold in one direction to ~90 nm, with the neighbouring layers separated primarily by H2O. The layers remain strongly held without peeling or translational shifts, maintaining a nearly perfect three-dimensional lattice structure of >3,000 layers. First-principle calculations yield a long-range directional structuring of the H2O molecules that may help to stabilize the highly swollen structure. The crystals can also instantaneously shrink back to their original sizes. These findings provide a benchmark for understanding the exfoliating layered materials.


Journal of the American Chemical Society | 2014

Gigantic Swelling of Inorganic Layered Materials: A Bridge to Molecularly Thin Two-Dimensional Nanosheets

Fengxia Geng; Renzhi Ma; Yasuo Ebina; Yusuke Yamauchi; Nobuyoshi Miyamoto; Takayoshi Sasaki

Platy microcrystals of a typical layered material, protonated titanate, have been shown to undergo an enormous degree of swelling in aqueous solutions of various amines, including tertiary amines, quaternary ammonium hydroxides, and primary amines. Introducing these solutions expanded the crystal gallery height by up to ~100-fold. Through systematic analysis, we determined that ammonium ion intercalation is predominantly affected by the acid-base equilibrium and that the degree of swelling or inflow of H2O is controlled by the osmotic pressure balance between the gallery and the solution environment, both of which are relatively independent of electrolyte identity but substantially dependent on molarity. In solutions of tertiary amines and quaternary ammonium hydroxides, the uptake of ammonium ions increases nearly linearly with increasing external concentration before reaching a saturation plateau, i.e., ~40% relative to the cation-exchange capacity of the crystals used. The only exception is tetrabutylammonium ions, which yield a lower saturation value, ~30%, owing to steric effects. The swelling behaviors in some primary amine solutions differ as a result of the effect of attractive forces between amine solute molecules on the solution osmotic pressure. Although the swelling is essentially colligative in nature, the stability of the resultant swollen structure is heavily dependent on the chemical nature of the guest ions. Intercalated ions of higher polarity and smaller size help stabilize the swollen structure, whereas ions of lower polarity and larger size lead readily to exfoliation. The insight gained from this study sheds new light on both the incorporation of guest molecules into a gallery of layered structures in general and the exfoliation of materials into elementary single-layer nanosheets.

Collaboration


Dive into the Yasuo Ebina's collaboration.

Top Co-Authors

Avatar

Takayoshi Sasaki

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Kazunori Takada

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minoru Osada

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Kosho Akatsuka

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Renzhi Ma

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Tadashi C. Ozawa

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bao Wen Li

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Mamoru Watanabe

National Institute for Materials Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge