Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasushi Fujioka is active.

Publication


Featured researches published by Yasushi Fujioka.


Nuclear Medicine and Biology | 2001

Effect of molecular charges on renal uptake of 111In-DTPA-conjugated peptides

Hiromichi Akizawa; Yasushi Arano; Masaki Mifune; Akimasa Iwado; Yutaka Saito; Takahiro Mukai; Tomoya Uehara; Masahiro Ono; Yasushi Fujioka; Kazuma Ogawa; Yoshiaki Kiso; Hideo Saji

The effect of molecular charges on renal accumulation of 111In-DTPA-labeled low molecular weight (LMW) peptides was investigated using 111In-DTPA-octreotide derivatives as models to design radiolabeled peptides that are taken up less by renal cells. The N-terminal D-phenylalanine (Phe) of 111In-DTPA-D-Phe(1)-octreotide was replaced with L-aspartic acid (Asp), L-lysine (Lys), L-methionine (Met) or L-Phe. Cellulose acetate electrophoresis indicated that both 111In-DTPA-L-Phe(1)-octreotide and 111In-DTPA-L-Met(1)-octreotide showed similar net charges, whereas 111In-DTPA-L-alphaLys(1)-octreotide and 111In-DTPA-L-Asp(1)-octreotide had more positive and negative charges, respectively, at pH values similar to those in blood and glomerular filtrate. When injected into mice, significant differences were observed in the renal radioactivity levels. 111In-DTPA-L-alphaLys(1)-octreotide showed the highest radioactivity levels from 10 min to 6 h postinjection, whereas the lowest radioactivity levels were observed with 111In-DTPA-L-Asp(1)-octreotide at all the postinjection intervals. These findings indicated that the replacement of only one amino acid in 111In-DTPA-D-Phe(1)-octreotide significantly altered net molecular charges of the resulting peptides and that the net charges of the 111In-DTPA-octreotide derivatives significantly affected their renal uptake. Thus, an increase of negative charges in peptide molecules may constitute a strategy for designing 111In-DTPA-conjugated LMW peptides with low renal radioactivity levels.


Nuclear Medicine and Biology | 2001

Plasma protein binding of 99mTc-labeled hydrazino nicotinamide derivatized polypeptides and peptides

Masahiro Ono; Yasushi Arano; Takahiro Mukai; Tomoya Uehara; Yasushi Fujioka; Kazuma Ogawa; Shinji Namba; Morio Nakayama; Tsuneo Saga; Junji Konishi; Kazuko Horiuchi; Akira Yokoyama; Hideo Saji

6-Hydrazinopyridine-3-carboxylic acid (HYNIC) constitutes one of the most attractive reagents to prepare (99m)Tc-labeled polypeptides and peptides of various molecular weights in combination with two tricine molecules as coligands. Indeed, (99m)Tc-HYNIC-conjugated IgG showed biodistribution of radioactivity similar to that of (111)In-DTPA-conjugated IgG. However, recent studies indicated significant plasma protein binding when the (99m)Tc labeling procedure was expanded to low molecular weight peptides. In this study, pharmacokinetics of (99m)Tc-HYNIC-conjugated IgG, Fab and RC160 using tricine were compared with their radioiodinated counterparts to evaluate this (99m)Tc-labeling method. In mice, [(99m)Tc](HYNIC-IgG)(tricine)(2) and [(99m)Tc](HYNIC-Fab)(tricine)(2) showed persistent localization of radioactivity in tissues when compared with their (125)I-labeled counterparts. [(99m)Tc](HYNIC-IgG)(tricine)(2) eliminated from the blood at a rate similar to that of (125)I-labeled IgG, while [(99m)Tc](HYNIC-Fab)(tricine)(2) showed significantly slower clearance of the radioactivity than (125)I-labeled Fab. On size-exclusion HPLC analyses, little changes were observed in radiochromatograms after incubation of [(99m)Tc](HYNIC-IgG)(tricine)(2) in murine plasma. However, [(99m)Tc](HYNIC-Fab)(tricine)(2) and [(99m)Tc](HYNIC-RC160)(tricine)(2) demonstrated significant increases in the radioactivity in higher molecular weight fractions in plasma. Formation of higher molecular weight species was reduced when [(99m)Tc](HYNIC-RC160)(tricine)(2) was stabilized with nicotinic acid (NIC) to generate [(99m)Tc](HYNIC-RC160)(tricine)(NIC). [(99m)Tc](HYNIC-RC160)(tricine)(NIC) also demonstrated significantly faster clearance of the radioactivity from the blood than [(99m)Tc](HYNIC-RC160)(tricine)(2). These findings suggested that one of the tricine coligands in (99m)Tc-HYNIC-labeled (poly)peptides would be replaced with plasma proteins to generate higher molecular weight species that exhibit slow blood clearance. In addition, the molecular sizes of parental peptides played an important role in the progression of the exchange reaction of one of the tricine coligands with plasma proteins.


Nuclear Medicine and Biology | 2001

99mTc-HYNIC-derivatized ternary ligand complexes for 99mTc-labeled polypeptides with low in vivo protein binding

Masahiro Ono; Yasushi Arano; Takahiro Mukai; Yasushi Fujioka; Kazuma Ogawa; Tomoya Uehara; Tsuneo Saga; Junji Konishi; Hideo Saji

6-Hydrazinopyridine-3-carboxylic acid (HYNIC) is a representative agent used to prepare technetium-99m ((99m)Tc)-labeled polypeptides with tricine as a coligand. However, (99m)Tc-HYNIC-labeled polypeptides show delayed elimination rates of the radioactivity not only from the blood but also from nontarget tissues such as the liver and kidney. In this study, a preformed chelate of tetrafluorophenol (TFP) active ester of [(99m)Tc](HYNIC)(tricine)(benzoylpyridine: BP) ternary complex was synthesized to prepare (99m)Tc-labeled polypeptides with higher stability against exchange reactions with proteins in plasma and lysosomes using the Fab fragment of a monoclonal antibody and galactosyl-neoglycoalbumin (NGA) as model polypeptides. When incubated in plasma, [(99m)Tc](HYNIC-Fab)(tricine)(BP) showed significant reduction of the radioactivity in high molecular weight fractions compared with [(99m)Tc](HYNIC-Fab)(tricine)(2.) When injected into mice, [(99m)Tc](HYNIC-NGA)(tricine)(BP) was metabolized to [(99m)Tc](HYNIC-lysine)(tricine)(BP) in the liver with no radioactivity detected in protein-bound fractions in contrast to the observations with [(99m)Tc](HYNIC-NGA)(tricine)(2.) In addition, [(99m)Tc](HYNIC-NGA)(tricine)(BP) showed significantly faster elimination rates of the radioactivity from the liver as compared with [(99m)Tc](HYNIC-NGA)(tricine)(2.) Similar results were observed with (99m)Tc-labeled Fab fragments where [(99m)Tc](HYNIC-Fab)(tricine)(BP) exhibited significantly faster elimination rates of the radioactivity not only from the blood but also from the kidney. These findings indicated that conjugation of [(99m)Tc](HYNIC)(tricine)(BP) ternary ligand complex to polypeptides accelerated elimination rates of the radioactivity from the blood and nontarget tissues due to low binding of the [(99m)Tc](HYNIC)(tricine)(BP) complex with proteins in the blood and in the lysosomes. Such characteristics would render the TFP active ester of [(99m)Tc](HYNIC)(tricine)(BP) complex attractive as a radiolabeling reagent for targeted imaging.


Nuclear Medicine and Biology | 2001

Significance of 111In-DTPA chelate in renal radioactivity levels of 111In-DTPA-conjugated peptides

Hiromichi Akizawa; Yasushi Arano; Masaki Mifune; Akimasa Iwado; Yutaka Saito; Tomoya Uehara; Masahiro Ono; Yasushi Fujioka; Kazuma Ogawa; Yoshiaki Kiso; Hideo Saji

Metabolic studies of (111)In-DTPA-labeled polypeptides and peptides showed that the radiolabeled (poly)peptides generated (111)In-DTPA-adducts of amino acid that possess long residence times in the lysosomal compartment of the tissues where (poly)peptides accumulated. However, a recent study suggested that metal-chelate-methionine (Met) might possess in vivo behaviors different from metal-chelate adducts of other amino acids. In this study, to elucidate whether some biological characteristics of Met may accelerate the renal elimination rate of (111)In-DTPA-adduct of Met into urine, (111)In-DTPA-Met(1)-octreotide was synthesized and the renal handling of (111)In-DTPA-Met was investigated using (111)In-DTPA-L-Phe(1)-octreotide (Phe represents phenylalanine), which was reported previously, as a reference. Both (111)In-DTPA-conjugated octreotide analogs were stable against 3-h incubation in murine serum at 37 degrees C. Both (111)In-DTPA-octreotide analogs also showed rapid clearance of the radioactivity from the blood and similar accumulation of the radioactivity in the kidney. No significant differences were observed in the renal radioactivity levels from 10 min to 24 h postinjection between the two. Metabolic studies indicated that (111)In-DTPA-Met(1)-octreotide and (111)In-DTPA-L-Phe(1)-octreotide generated (111)In-DTPA-adducts of Met and Phe, respectively, as the final radiometabolites at similar rates. These findings suggested that the long residence times of the radioactivity in tissues after administration of (111)In-DTPA-labeled peptides and polypeptides would be attributed to inherent characteristics of (111)In-DTPA chelate.


Journal of Pharmacy and Pharmacology | 2002

Synthesis and evaluation of a monoreactive DOTA derivative for indium-111-based residualizing label to estimate protein pharmacokinetics

Takahiro Mukai; Shinji Namba; Yasushi Arano; Masahiro Ono; Yasushi Fujioka; Tomoya Uehara; Kazuma Ogawa; Junji Konishi; Hideo Saji

The purpose of this study was to develop an indium‐111 (111In)‐based residualizing label for estimating the pharmacokinetics of proteins. 1,4,7,10‐Tetraazacyclododecane‐N,N′,N′,N″‐tetraacetic acid (DOTA), which produced a highly stable and hydrophilic 111In chelate, was selected as the chelating site, and the monoreactive DOTA derivative with a tetrafluorophenyl group as the protein binding site (mDOTA) was designed to avoid cross‐linkings of proteins. mDOTA was synthesized with an overall yield of 11%. The stability in murine plasma, the radioactivity retention in the catabolic sites of proteins and the radiochemical yields of 111In‐labelled proteins via mDOTA were investigated using human serum albumin (HSA), galactosyl‐neoglycoalbumin (NGA) and cytochrome c (cyt c) as model proteins. 111In‐labelled HSA via mDOTA was highly stable for 5 days after incubation in murine plasma. Long retention of radioactivity in the catabolic sites was observed after injection of 111In‐DOTA‐NGA in mice, due to the slow elimination of the radiometabolite from the lysosome. At a chelator concentration of 42.2 μM, 111In‐DOTA‐cytc was produced with over 91 % radiochemical yield. On the other hand, 111In‐DOTA‐lysine and 111In‐DOTA were obtained with high radiochemical yields at lower chelator concentrations. These findings indicated that mDOTA would be an appropriate 111In‐labelling agent for estimating protein pharmacokinetics. These findings also suggested that the introduction of a protein binding site at a position distal from the unmodified DOTA structure would be preferable to preparing 111In‐DOTA‐labelled proteins with higher specific activity.


Nuclear Medicine and Biology | 1999

The integrity of the disulfide bond in a cyclic somatostatin analog during 99mTc complexation reactions

Tomoya Uehara; Yasushi Arano; Masahiro Ono; Yasushi Fujioka; Kazuma Ogawa; Shinji Namba; Morio Nakayama; Mitsuru Koizumi; Nobutaka Fujii; Kazuko Horiuchi; Akira Yokoyama; Hideo Saji

Recent development of a variety of thiol-free chelating agents has facilitated the design of 99mTc-labeled somatostatin analogs suitable for receptor imaging of somatostatin-positive tumors. However, it remains ambiguous whether the disulfide bonds in cyclic peptides are stable during 99mTc complexation reactions, and contradictory results have been reported regarding the integrity of disulfide bonds in cyclic somatostatin analogs. To estimate the stability of the disulfide bond in a synthetic somatostatin analog at low peptide concentrations, [125I]I-RC-160, in which radioiodine was incorporated into the 3-Tyr residue, was synthesized and the integrity of the disulfide bond of the peptide was investigated in the presence of reducing agents such as ascorbic acid, dithionite, and stannous ions. The disulfide bond in [125I]I-RC-160 remained stable in the presence of ascorbic acid in boiling water. The disulfide bond was also stable when treated with stannous ions at concentrations sufficient to reduce 99mTc for complexation with a thiol-free chelating agent, bis(hydroxamamide) analog when the 99mTc complexation reaction was performed at room temperature. However, the disulfide bond of [125I]I-RC-160 was slightly cleaved in the presence of a small amount of stannous ions when the reaction was performed in boiling water. Treatment of [125I]I-RC-160 with dithionite in boiling water markedly reduced the disulfide bond of the parental peptide. These findings indicated that synthetic somatostatin analogs may be labeled with 99mTc with stannous ions as the reducing agent without impairing their structure after conjugation of thiol-free chelating agents that provide 99mTc chelates under mild reaction conditions.


British Journal of Cancer | 1999

A novel immunoscintigraphy technique using metabolizable linker with angiotensin II treatment

Yuji Nakamoto; Harumi Sakahara; Tsuneo Saga; Noriko Sato; Songji Zhao; Yasushi Arano; Yasushi Fujioka; Hideo Saji; Jun Konishi

SummaryImmunoscintigraphy is a tumour imaging technique that can have specificity, but high background radioactivity makes it difficult to obtain tumour imaging soon after the injection of radioconjugate. The aim of this study is to see whether clear tumour images can be obtained soon after injection of a radiolabelled reagent using a new linker with antibody fragments (Fab), in conditions of induced hypertension in mice. Fab fragments of a murine monoclonal antibody against human osteosarcoma were labelled with radioiodinated 3′-iodohippuryl N-ɛ-maleoyl-L-lysine (HML) and were injected intravenously to tumour-bearing mice. Angiotensin II was administered for 4 h before and for 1 h after the injection of radiolabelled Fab. Kidney uptake of 125I-labelled-HML-Fab was much lower than that of 125I-labelled-Fab radioiodinated by the chloramine-T method, and the radioactivity of tumour was increased approximately two-fold by angiotensin II treatment at 3 h after injection, indicating high tumour-to-normal tissue ratios. A clear tumour image was obtained with 131I-labelled-HML-Fab at 3 h post-injection. The use of HML as a radiolabelling reagent, combined with angiotensin II treatment, efficiently improved tumour targeting and enabled the imaging of tumours. These results suggest the feasibility of PET scan using antibody fragment labelled with 18F-fluorine substitute for radioiodine.


Bioconjugate Chemistry | 1998

RENAL METABOLISM OF 111IN-DTPA-D-PHE1-OCTREOTIDE IN VIVO

Hiromichi Akizawa; Yasushi Arano; Takashi Uezono; Masahiro Ono; Yasushi Fujioka; Tomoya Uehara; Akira Yokoyama; Kenichi Akaji; Yoshiaki Kiso; Mitsuru Koizumi; Hideo Saji


Cancer Research | 1999

Chemical Design of Radiolabeled Antibody Fragments for Low Renal Radioactivity Levels

Yasushi Arano; Yasushi Fujioka; Hiromichi Akizawa; Masahiro Ono; Tomoya Uehara; Kouji Wakisaka; Morio Nakayama; Harumi Sakahara; Junji Konishi; Hideo Saji


Bioconjugate Chemistry | 1999

Intracellular metabolic fate of radioactivity after injection of technetium-99m-labeled hydrazino nicotinamide derivatized proteins.

Masahiro Ono; Yasushi Arano; Tomoya Uehara; Yasushi Fujioka; Kazuma Ogawa; Shinji Namba; Takahiro Mukai; Morio Nakayama; Hideo Saji

Collaboration


Dive into the Yasushi Fujioka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tsuneo Saga

National Institute of Radiological Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge