Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasushi Ishihama is active.

Publication


Featured researches published by Yasushi Ishihama.


Molecular & Cellular Proteomics | 2005

Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein

Yasushi Ishihama; Yoshiya Oda; Tsuyoshi Tabata; Toshitaka Sato; Takeshi Nagasu; Juri Rappsilber; Matthias Mann

To estimate absolute protein contents in complex mixtures, we previously defined a protein abundance index (PAI) as the number of observed peptides divided by the number of observable peptides per protein (Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome. Res. 12, 1231–1245). Here we report that PAI values obtained at different concentrations of serum albumin show a linear relationship with the logarithm of protein concentration in LC-MS/MS experiments. This was also the case for 46 proteins in a mouse whole cell lysate. For absolute quantitation, PAI was converted to exponentially modified PAI (emPAI), equal to 10PAI minus one, which is proportional to protein content in a protein mixture. For the 46 proteins in the whole lysate, the deviation percentages of the emPAI-based abundances from the actual values were within 63% on average, similar or better than determination of abundance by protein staining. emPAI was applied to comprehensive protein expression analysis and to a comparison study between gene and protein expression in a human cancer cell line, HCT116. The values of emPAI are easily calculated and add important quantitation information to proteomic experiments; therefore we suggest that they should be reported in large scale proteomic identification projects.


Nature Protocols | 2007

Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips

Juri Rappsilber; Matthias Mann; Yasushi Ishihama

Mass spectrometry (MS)-based proteomics measures peptides derived from proteins by proteolytic cleavage. Before performing the analysis by matrix-assisted laser desorption/ionization–tandem mass spectrometry (MALDI–MS/MS), nanoelectrospray–MS/MS (NanoES-MS/MS) or liquid chromatography–MS/MS (LC–MS/MS), the peptide mixtures need to be cleaned, concentrated and often selectively enriched or pre-fractionated, for which we employ simple, self-made and extremely economical stop-and-go-extraction tips (StageTips). StageTips are ordinary pipette tips containing very small disks made of beads with reversed phase, cation-exchange or anion-exchange surfaces embedded in a Teflon mesh. The fixed nature of the beads allows flexible combination of disks with different surfaces to obtain multi-functional tips. Disks containing different surface functionalities and loose beads such as titania and zirconia for phosphopeptide enrichment can be combined. Incorporation into an automated workflow has also been demonstrated. Desalting and concentration takes approximately 5 min while fractionation or enrichment takes approximately 30 min.


Nature | 2002

Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry

Edwin Lasonder; Yasushi Ishihama; Jens S. Andersen; Adriaan M. W. Vermunt; Arnab Pain; Robert W. Sauerwein; Wijnand Eling; Neil Hall; Andrew P. Waters; Hendrik G. Stunnenberg; Matthias Mann

The annotated genomes of organisms define a ‘blueprint’ of their possible gene products. Post-genome analyses attempt to confirm and modify the annotation and impose a sense of the spatial, temporal and developmental usage of genetic information by the organism. Here we describe a large-scale, high-accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last two groups provide insights into the biology of the sexual stages of the parasite, and include conserved, stage-specific, secreted and membrane-associated proteins. A subset of these proteins contain domains that indicate a role in cell–cell interactions, and therefore can be evaluated as potential components of a malaria vaccine formulation. We also report a set of peptides with significant matches in the parasite genome but not in the protein set predicted by computational methods.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis

Taishi Umezawa; Naoyuki Sugiyama; Masahide Mizoguchi; Shimpei Hayashi; Fumiyoshi Myouga; Kazuko Yamaguchi-Shinozaki; Yasushi Ishihama; Takashi Hirayama; Kazuo Shinozaki

Abscisic acid (ABA) signaling is important for stress responses and developmental processes in plants. A subgroup of protein phosphatase 2C (group A PP2C) or SNF1-related protein kinase 2 (subclass III SnRK2) have been known as major negative or positive regulators of ABA signaling, respectively. Here, we demonstrate the physical and functional linkage between these two major signaling factors. Group A PP2Cs interacted physically with SnRK2s in various combinations, and efficiently inactivated ABA-activated SnRK2s via dephosphorylation of multiple Ser/Thr residues in the activation loop. This step was suppressed by the RCAR/PYR ABA receptors in response to ABA. However the abi1–1 mutated PP2C did not respond to the receptors and constitutively inactivated SnRK2. Our results demonstrate that group A PP2Cs act as ‘gatekeepers’ of subclass III SnRK2s, unraveling an important regulatory mechanism of ABA signaling.


Cell | 2005

Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli

Michael J. Kerner; Dean Naylor; Yasushi Ishihama; Tobias Maier; Hung-Chun Chang; Anna P. Stines; Costa Georgopoulos; Dmitrij Frishman; Manajit Hayer-Hartl; Matthias Mann; F. Ulrich Hartl

The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only approximately 85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (betaalpha)8 TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions.


BMC Genomics | 2008

Protein abundance profiling of the Escherichia coli cytosol.

Yasushi Ishihama; Thorsten Schmidt; Juri Rappsilber; Matthias Mann; F. Ulrich Hartl; Michael J. Kerner; Dmitrij Frishman

BackgroundKnowledge about the abundance of molecular components is an important prerequisite for building quantitative predictive models of cellular behavior. Proteins are central components of these models, since they carry out most of the fundamental processes in the cell. Thus far, protein concentrations have been difficult to measure on a large scale, but proteomic technologies have now advanced to a stage where this information becomes readily accessible.ResultsHere, we describe an experimental scheme to maximize the coverage of proteins identified by mass spectrometry of a complex biological sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell.As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal proteins. Proteins involved in energy metabolism as well as those with binding function were also found in high copy number while proteins annotated with the terms metabolism, transcription, transport, and cellular organization were rare. The barrel-sandwich fold was found to be the structural fold with the highest abundance. Highly abundant proteins are predicted to be less prone to aggregation based on their length, pI values, and occurrence patterns of hydrophobic stretches. We also find that abundant proteins tend to be predominantly essential. Additionally we observe a significant correlation between protein and mRNA abundance in E. coli cells.ConclusionAbundance measurements for more than 1000 E. coli proteins presented in this work represent the most complete study of protein abundance in a bacterial cell so far. We show significant associations between the abundance of a protein and its properties and functions in the cell. In this way, we provide both data and novel insights into the role of protein concentration in this model organism.


Molecular & Cellular Proteomics | 2007

Phosphopeptide Enrichment by Aliphatic Hydroxy Acid-modified Metal Oxide Chromatography for Nano-LC-MS/MS in Proteomics Applications

Naoyuki Sugiyama; Takeshi Masuda; Kosaku Shinoda; Akihiro Nakamura; Masaru Tomita; Yasushi Ishihama

We developed novel methods for phosphopeptide enrichment using aliphatic hydroxy acid-modified metal oxide chromatography (MOC). Titania and zirconia were successfully applied to enrich phosphopeptides with the aid of aliphatic hydroxy acids, such as lactic acid and β-hydroxypropanoic acid, to reduce the interaction between acidic non-phosphopeptides and the metal oxides. These methods removed the vast majority of non-phosphopeptides from phosphoprotein standard digests, and large numbers of phosphopeptides could be readily identified. The methods were coupled with nano-LC-MS/MS systems without difficulty. Recovery of phosphopeptides in MOC varied greatly from peptide to peptide, ranging from a few percent to 100%, and the average was almost 50%. Repeatability and linearity were satisfactory. In an examination of the cytoplasmic fraction of HeLa cells, more than 1000 phosphopeptides were identified using lactic acid-modified titania MOC and β-hydroxypropanoic acid-modified zirconia MOC, respectively. The overlap between phosphopeptides enriched by these two methods was 40%, and the combined results provided 1646 unique phosphopeptides. To our knowledge, this is the first successful application of a single MOC-based approach to phosphopeptide enrichment from complex biological samples such as cell lysates.


Molecular Systems Biology | 2008

Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis.

Naoyuki Sugiyama; Hirofumi Nakagami; Keiichi Mochida; Arsalan Daudi; Masaru Tomita; Ken Shirasu; Yasushi Ishihama

Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome‐wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary phosphopeptide enrichment techniques coupled with high‐accuracy mass spectrometry. Using unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides with 2172 high‐confidence, unique phosphorylation sites from 1346 proteins. The distribution of phosphoserine, phosphothreonine, and phosphotyrosine sites was 85.0, 10.7, and 4.3%. Although typical tyrosine‐specific protein kinases are absent in Arabidopsis, the proportion of phosphotyrosines among the phospho‐residues in Arabidopsis is similar to that in humans, where over 90 tyrosine‐specific protein kinases have been identified. In addition, the tyrosine phosphoproteome shows features distinct from those of the serine and threonine phosphoproteomes. Taken together, we highlight the extent and contribution of tyrosine phosphorylation in plants.


Plant Physiology | 2010

Large-Scale Comparative Phosphoproteomics Identifies Conserved Phosphorylation Sites in Plants

Hirofumi Nakagami; Naoyuki Sugiyama; Keiichi Mochida; Arsalan Daudi; Yuko Yoshida; Tetsuro Toyoda; Masaru Tomita; Yasushi Ishihama; Ken Shirasu

Knowledge of phosphorylation events and their regulation is crucial to understand the functional biology of plants. Here, we report a large-scale phosphoproteome analysis in the model monocot rice (Oryza sativa japonica ‘Nipponbare’), an economically important crop. Using unfractionated whole-cell lysates of rice cells, we identified 6,919 phosphopeptides from 3,393 proteins. To investigate the conservation of phosphoproteomes between plant species, we developed a novel phosphorylation-site evaluation method and performed a comparative analysis of rice and Arabidopsis (Arabidopsis thaliana). The ratio of tyrosine phosphorylation in the phosphoresidues of rice was equivalent to those in Arabidopsis and human. Furthermore, despite the phylogenetic distance and the use of different cell types, more than 50% of the phosphoproteins identified in rice and Arabidopsis, which possessed ortholog(s), had an orthologous phosphoprotein in the other species. Moreover, nearly half of the phosphorylated orthologous pairs were phosphorylated at equivalent sites. Further comparative analyses against the Medicago phosphoproteome also showed similar results. These data provide direct evidence for conserved regulatory mechanisms based on phosphorylation in plants. We also assessed the phosphorylation sites on nucleotide-binding leucine-rich repeat proteins and identified novel conserved phosphorylation sites that may regulate this class of proteins.


Scientific Reports | 2012

PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy

Kahori Shiba-Fukushima; Yuzuru Imai; Shigeharu Yoshida; Yasushi Ishihama; Tomoko Kanao; Shigeto Sato; Nobutaka Hattori

Parkinsons disease genes PINK1 and parkin encode kinase and ubiquitin ligase, respectively. The gene products PINK1 and Parkin are implicated in mitochondrial autophagy, or mitophagy. Upon the loss of mitochondrial membrane potential (ΔΨm), cytosolic Parkin is recruited to the mitochondria by PINK1 through an uncharacterised mechanism – an initial step triggering sequential events in mitophagy. This study reports that Ser65 in the ubiquitin-like domain (Ubl) of Parkin is phosphorylated in a PINK1-dependent manner upon depolarisation of ΔΨm. The introduction of mutations at Ser65 suggests that phosphorylation of Ser65 is required not only for the efficient translocation of Parkin, but also for the degradation of mitochondrial proteins in mitophagy. Phosphorylation analysis of Parkin pathogenic mutants also suggests Ser65 phosphorylation is not sufficient for Parkin translocation. Our study partly uncovers the molecular mechanism underlying the PINK1-dependent mitochondrial translocation and activation of Parkin as an initial step of mitophagy.

Collaboration


Dive into the Yasushi Ishihama's collaboration.

Researchain Logo
Decentralizing Knowledge