Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasushi Shimizu is active.

Publication


Featured researches published by Yasushi Shimizu.


Lung Cancer | 2012

Epigenetic therapy with 3-deazaneplanocin A, an inhibitor of the histone methyltransferase EZH2, inhibits growth of non-small cell lung cancer cells.

Junko Kikuchi; Taichi Takashina; Ichiro Kinoshita; Eiki Kikuchi; Yasushi Shimizu; Jun Sakakibara-Konishi; Satoshi Oizumi; Victor E. Marquez; Masaharu Nishimura; Hirotoshi Dosaka-Akita

EZH2 (enhancer of zeste homolog 2) is the catalytic subunit of PRC2 (polycomb repressive complex 2), which mediates histone methyltransferase activity and functions as transcriptional repressor involved in gene silencing. EZH2 is involved in malignant transformation and biological aggressiveness of several human malignancies. We previously demonstrated that non-small cell lung cancers (NSCLCs) also overexpress EZH2 and that high expression of EZH2 correlates with poor prognosis. Growing evidence indicates that EZH2 may be an appropriate therapeutic target in malignancies, including NSCLCs. Recently, an S-adenosyl-l-homocysteine hydrolase inhibitor, 3-Deazaneplanocin A (DZNep), has been shown to deplete and inhibit EZH2. The aim of this study was to determine the effect of DZNep in NSCLC cells. Knockdown of EZH2 by small-interfering RNA (siRNA) resulted in decreased growth of four NSCLC cell lines. MTT assays demonstrated that DZNep treatment resulted in dose-dependent inhibition of proliferation in the NSCLC cell lines with a half maximal inhibitory concentration (IC50) ranging from 0.08 to 0.24 μM. Immortalized but non-cancerous bronchial epithelial and fibroblast cell lines were less sensitive to DZNep than the NSCLC cell lines. Soft agarose assays demonstrated that anchorage-independent growth was also reduced in all three NSCLC cell lines that were evaluated using this assay. Flow cytometry analysis demonstrated that DZNep induced apoptosis and G1 cell cycle arrest in NSCLC cells, which was partially associated with cyclin A decrease and p27(Kip1) accumulation. DZNep depleted cellular levels of EZH2 and inhibited the associated histone H3 lysine 27 trimethylation. These results indicated that an epigenetic therapy that pharmacologically targets EZH2 via DZNep may constitute a novel approach to treatment of NSCLCs.


Cancer | 2010

Distinctive expression of the polycomb group proteins Bmi1 polycomb ring finger oncogene and enhancer of zeste homolog 2 in nonsmall cell lung cancers and their clinical and clinicopathologic significance

Junko Kikuchi; Ichiro Kinoshita; Yasushi Shimizu; Eiki Kikuchi; Jun Konishi; Satoshi Oizumi; Kichizo Kaga; Yoshihiro Matsuno; Masaharu Nishimura; Hirotoshi Dosaka-Akita

The polycomb group genes Bmi1 polycomb ring finger oncogene (Bmi1) and enhancer of zeste homolog 2 (EZH2) function as transcriptional repressors involved in gene silencing and in the malignant transformation and biologic aggressiveness of several human carcinomas. In the current study, the authors evaluated Bmi1 and EZH2 protein expression in specimens of human nonsmall cell lung cancer (NSCLC).


Cancer Research | 2005

E1AF/PEA3 activates the Rho/Rho-associated kinase pathway to increase the malignancy potential of non-small-cell lung cancer cells

Nobuyuki Hakuma; Ichiro Kinoshita; Yasushi Shimizu; Koichi Yamazaki; Koichi Yoshida; Masaharu Nishimura; Hirotoshi Dosaka-Akita

E1AF/PEA3, an Ets family transcription factor, is frequently overexpressed in non-small-cell lung cancers (NSCLCs). Overexpression of E1AF increases motility and invasion of VMRC-LCD and NCI-H226 NSCLC cells, which lack endogenous E1AF expression, and the effect is synergistically increased by hepatocyte growth factor (HGF). The small GTPase Rho/Rho-associated kinase (ROCK) pathway is also involved in motility and invasion. To determine the role of the Rho/ROCK pathway in malignant phenotypes induced by E1AF, we analyzed VMRC-LCD cells transfected with an E1AF expression vector (LCD-E1AF cells) or with empty vector (LCD-vector cells). LCD-E1AF cells had more GTP-bound (active) Rho than LCD-vector cells and Rho activation was synergistically increased by HGF. The Rho activation by E1AF and HGF was also shown in NCI-H226 cells. Phosphorylation of myosin light chain (MLC), a downstream effector of ROCK signaling, was higher in LCD-E1AF cells than in LCD-vector cells, especially under HGF treatment. A specific ROCK inhibitor, Y27632, strongly suppressed MLC phosphorylation, cell motility, and invasion. In nude mice implanted s.c. and intrapulmonarily, LCD-E1AF cells made more local tumors than LCD-vector cells (six of six versus one of seven mice and four of seven versus one of seven mice, respectively). Three of the four mice with lung tumors from LCD-E1AF cells had lymph node metastases whereas the mouse with LCD-vector tumors did not. LCD-E1AF tumors showed higher MLC phosphorylation than LCD-vector tumors. These results suggest that E1AF activates the Rho/ROCK pathway in an HGF-enhanced manner and its activation is important in E1AF-induced motility and invasion as well as tumorigenesis and metastasis in NSCLC cells.


Lung Cancer | 2011

Minichromosome maintenance (MCM) protein 4 as a marker for proliferation and its clinical and clinicopathological significance in non-small cell lung cancer

Junko Kikuchi; Ichiro Kinoshita; Yasushi Shimizu; Eiki Kikuchi; Kayoko Takeda; Hiroyuki Aburatani; Satoshi Oizumi; Jun Konishi; Kichizo Kaga; Yoshihiro Matsuno; Michael J. Birrer; Masaharu Nishimura; Hirotoshi Dosaka-Akita

BACKGROUND Minichromosome maintenance (MCM) proteins 2-7 form a complex essential for the initiation of DNA replication. In the process to screen expression changes related to growth suppression of non-small cell lung cancer (NSCLC) cells by a cJun dominant-negative mutant, we found that reduced expression of MCM4 was correlated with this growth suppression. METHOD We determined the relevance of MCM4 in proliferation of NSCLC by downregulating its expression with small-interfering RNA in three NSCLC cell lines. We then immunohistochemically analyzed MCM4 expression in 156 surgically resected NSCLCs to correlate clinicopathologic characteristics. RESULTS MCM4 downregulation reduced proliferation in two cell lines. MCM4 expression was higher in cancer cells than in adjacent normal bronchial epithelial cells (p<0.001). High MCM4 expression was correlated with male gender, heavy smoking, poorer differentiation and non-adenocarcinoma histology (p<0.001, respectively). High MCM4 expression was also correlated with proliferation markers, Ki-67 and cyclin E expression (p<0.001, respectively). MCM4 expression was not associated with survival. CONCLUSION MCM4 may play an essential role in the proliferation of some NSCLC cells. Taken together with higher expression in NSCLCs and its correlation with clinicopathologic characteristics such as non-adenocarcinoma histology, MCM4 may have potential as a therapeutic target in certain population with NSCLCs.


British Journal of Cancer | 2008

Growth inhibition of non-small cell lung cancer cells by AP-1 blockade using a cJun dominant-negative mutant

Yasushi Shimizu; Ichiro Kinoshita; Junko Kikuchi; Kohichi Yamazaki; Masaharu Nishimura; Michael J. Birrer; Hirotoshi Dosaka-Akita

cJun, a major constituent of AP-1 transcription factor transducing multiple mitogen growth signals, is frequently overexpressed in non-small cell lung cancers (NSCLCs). The purpose of this study is to determine the effects of AP-1 blockade on the growth of NSCLC cells using a cJun dominant-negative mutant, TAM67. Transiently transfected TAM67 inhibited AP-1 transcriptional activity in NSCLC cell lines, NCI-H1299 (H1299), A549 and NCI-H520 (H520). The colony-forming efficiency of H1299 and A549 was reduced by TAM67, while that of H520 was not. To elucidate the effects of TAM67 on the growth of H1299, we established H1299 clone cells that expressed TAM67 under the control of a doxycycline-inducible promoter. In the H1299 clone cells, the induced TAM67 inhibited anchorage-dependent growth by promoting G1 cell-cycle block, but not by apoptosis. The induced TAM67 decreased the expression of a cell-cycle regulatory protein, cyclin A. TAM67 also inhibited anchorage-independent growth of these cells. Furthermore, TAM67 reduced growth of established xenograft tumours from these cells in nude mice. These results suggest that AP-1 plays an essential role in the growth of at least some of NSCLC cells.


World Journal of Gastrointestinal Oncology | 2016

Role of targeted therapy in metastatic colorectal cancer

Yoshihito Ohhara; N. Fukuda; Satoshi Takeuchi; Rio Honma; Yasushi Shimizu; Ichiro Kinoshita; Hirotoshi Dosaka-Akita

Colorectal cancer (CRC) is a significant cause of cancer-related morbidity and mortality all over the world. Improvements of cytotoxic and biologic agents have prolonged the survival in metastatic CRC (mCRC), with a median overall survival of approximately 2 years and more in the past two decades. The biologic agents that have proven clinical benefits in mCRC mainly target vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). In particular, bevacizumab targeting VEGF and cetuximab and panitumumab targeting EGFR have demonstrated significant survival benefits in combination with cytotoxic chemotherapy in the first-line, second-line, or salvage setting. Aflibercept, ramucirumab, and regorafenib are also used in second-line or salvage therapy. Recent retrospective analyses have shown that KRAS or NRAS mutations were negative predictive markers for anti-EGFR therapy. Based on the evidence from large randomized clinical trials, personalized therapy is necessary for patients with mCRC according to their tumor biology and characteristics. The aim of this paper was to summarize the results of the major randomized clinical trials and highlight the benefits of the molecular targeted agents in patients with mCRC.


BMC Cancer | 2008

Clinicopathological significance of expression of p-c-Jun, TCF4 and beta-Catenin in colorectal tumors

Kayoko Takeda; Ichiro Kinoshita; Yasushi Shimizu; Yusuke Ohba; Tomoo Itoh; Yoshihiro Matsuno; Toshiaki Shichinohe; Hirotoshi Dosaka-Akita

BackgroundA recent study has shown that phosphorylated c-Jun (p-c-Jun) interacts with TCF4 to form a complex that cooperatively enhances their transcriptional activity in the presence of β-Catenin, and that their interaction is critical for mouse intestinal tumorigenesis. To determine the significance of these three proteins in human colorectal tumors, we analyzed their nuclear expression by immunohistochemistry.Methodswe analyzed their nuclear expression by immunohistochemistry using paraffin-embedded specimens of 68 resected colorectal tumors, which consisted of 19 adenomas, 14 high-grade intraepithelial neoplasia (HGINs) and 35 adenocarcinomas. We also analyzed the expression of MMP7, which has functional AP-1 and TCF binding sites in its promoter.ResultsExpression of p-c-Jun, TCF4 and β-Catenin were significantly higher in adenomas than in the adjacent normal epithelia. Expression of p-c-Jun and β-Catenin in HGINs and adenocarcinomas were also significantly higher than in the adjacent normal epithelia. p-c-Jun expression, but not TCF4 and β-Catenin, was higher in adenomas and HGINs than in adenocarcinomas, in which p-c-Jun expression was negatively correlated with pT stage progression. Furthermore, significant correlations of expression were observed between p-c-Jun and TCF4 (r = 0.25, p = 0.04), TCF4 and β-Catenin (r = 0.30, p = 0.01), p-c-Jun and MMP7 (r = 0.26, p = 0.03), and TCF4 and MMP7 (r = 0.39, p = 0.0008), respectively.ConclusionThese results suggest that nuclear expression of p-c-Jun, TCF4 and β-Catenin have important roles in human colorectal tumor development and that p-c-Jun may play a pivotal role in the earlier stages of tumor development.


British Journal of Cancer | 2008

Simultaneous blockade of AP-1 and phosphatidylinositol 3-kinase pathway in non-small cell lung cancer cells

Junko Kikuchi; Ichiro Kinoshita; Yasushi Shimizu; Satoshi Oizumi; Masaharu Nishimura; Michael J. Birrer; Hirotoshi Dosaka-Akita

c-Jun is a major constituent of AP-1 transcription factor that transduces multiple mitogen growth signals, and it is frequently overexpressed in non-small cell lung cancers (NSCLCs). Earlier, we showed that blocking AP-1 by the overexpression of a c-Jun dominant-negative mutant, TAM67, inhibited NSCLC cell growth. The phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathway is important in transformation, proliferation, survival and metastasis of NSCLC cells. In this study, we used NCI-H1299 Tet-on clone cells that express TAM67 under the control of inducible promoter to determine the effects of inhibition of AP-1 and PI3K on cell growth. The PI3K inhibitor, LY294002, produced a dose-dependent inhibition of growth in H1299 cells and that inhibition was enhanced by TAM67. TAM67 increased dephosphorylation of Akt induced by LY294002 and reduced the TPA response element DNA-binding of phosphorylated c-Jun. TAM67 increased G1 cell cycle blockade induced by LY294002, which was partially associated with cyclin A decrease and p27Kip1 accumulation. Furthermore, TAM67 and LY294002 act, at least additively, to inhibit anchorage-independent growth of the H1299 cells. These results suggest that AP-1 and PI3K/Akt pathways play an essential role in the growth of some NSCLC cells.


Cancer Science | 2016

Combined inhibition of EZH2 and histone deacetylases as a potential epigenetic therapy for non‐small‐cell lung cancer cells

Taichi Takashina; Ichiro Kinoshita; Junko Kikuchi; Yasushi Shimizu; Jun Sakakibara-Konishi; Satoshi Oizumi; Masaharu Nishimura; Hirotoshi Dosaka-Akita

Recent discoveries have revealed that human cancer involves aberrant epigenetic alterations. We and others have previously shown that the histone methyltransferase EZH2, the catalytic subunit of polycomb repressive complex 2 (PRC2), is frequently overexpressed in non‐small‐cell lung cancer (NSCLC) and that an EZH2 inhibitor, 3‐deazaneplanocin A, inhibits the proliferation of NSCLC cells. Transcriptional silencing by EZH2 was recently shown to be required for the activity of histone deacetylases (HDACs) that interact with another PRC2 protein, EED. To develop a more effective epigenetic therapy for NSCLC, we determined the effects of co‐treatment with 3‐deazaneplanocin A and the HDAC inhibitor vorinostat (SAHA) in NSCLC cells. The co‐treatment synergistically suppressed the proliferation of all tested NSCLC cell lines, regardless of their epidermal growth factor receptor (EGFR) status. The synergistic effect was associated with slightly decreased histone H3 lysine 27 trimethylation, modestly increased histone acetylation, and the depletion of EZH2 and other PRC2 proteins. The co‐treatment resulted in an accumulation of p27Kip1, decrease in cyclin A, and increased apoptotic fraction in an additive/synergistic manner. Interestingly, the co‐treatment strongly suppressed EGFR signaling, not only in EGFR‐wild‐type NSCLC cells, but also in EGFR‐mutant cells, mainly through dephosphorylation of EGFR. Furthermore, the co‐treatment suppressed the in vivo tumor growth of EGFR‐mutant, EGFR–tyrosine kinase‐resistant H1975 cells more effectively than did each agent alone, without visible toxicity. These results suggest that the combined pharmacological targeting of EZH2 and HDACs may provide more effective epigenetic therapeutics for NSCLC.


Oncology | 2015

Expression of fucosyltransferase 8 is associated with an unfavorable clinical outcome in non-small cell lung cancers.

Rio Honma; Ichiro Kinoshita; Eiji Miyoshi; Utano Tomaru; Yoshihiro Matsuno; Yasushi Shimizu; Satoshi Takeuchi; Yuka Kobayashi; Kichizo Kaga; Naoyuki Taniguchi; Hirotoshi Dosaka-Akita

Objecitive: Fucosyltransferase 8 (FUT8), the only enzyme responsible for the core α1,6-fucosylation of asparagine-linked oligosaccharides of glycoproteins, is a vital enzyme in cancer development and progression. We examined FUT8 expression in non-small cell lung cancers (NSCLCs) to analyze its clinical significance. We also examined the expression of guanosine diphosphate-mannose-4,6-dehydratase (GMD), which is imperative for the synthesis of fucosylated oligosaccharides. Methods: Using immunohistochemistry, we evaluated the expression of FUT8 and GMD in relation to patient survival and prognosis in potentially curatively resected NSCLCs. Results: High expression of FUT8 was found in 67 of 129 NSCLCs (51.9%) and was significantly found in non-squamous cell carcinomas (p = 0.008). High expression of FUT8 was associated with poor survival (p = 0.03) and was also a significant and independent unfavorable prognostic factor in patients with potentially curatively resected NSCLCs (p = 0.047). High expression of GMD was significantly associated with high FUT8 expression (p = 0.04). Conclusions: High expression of FUT8 is associated with an unfavorable clinical outcome in patients with potentially curatively resected NSCLCs, suggesting that FUT8 can be a prognostic factor. The analysis of FUT8 expression and its core fucosylated products may provide new insights for the therapeutic targets of NSCLCs.

Collaboration


Dive into the Yasushi Shimizu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge