Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasushi Shimoda is active.

Publication


Featured researches published by Yasushi Shimoda.


Cell Adhesion & Migration | 2009

Contactins: emerging key roles in the development and function of the nervous system.

Yasushi Shimoda; Kazutada Watanabe

Contactins are a subgroup of molecules belonging to the immunoglobulin superfamily that are expressed exclusively in the nervous system. The subgroup consists of six members: contactin, TAG-1, BIG-1, BIG-2, NB-2 and NB-3. Since their identification in the late 1980s, contactin and TAG-1 have been studied extensively. Axonal expression and the neurite extension activity of contactin and TAG-1 attracted researchers to study the function of these molecules in axon guidance during development. After the exciting discovery of the molecular function of contactin and TAG-1 in myelination earlier this decade, these two molecules have come to be known as the principal molecules in the function and maintenance of myelinated neurons. In contrast, the function of the other four members of this subgroup remained unknown until recently. Here, we will give an overview of contactin function, including recent progress on BIG-2, NB-2 and NB-3.


Neuron | 2014

Pioneering Axons Regulate Neuronal Polarization in the Developing Cerebral Cortex

Takashi Namba; Yuji Kibe; Yasuhiro Funahashi; Shinichi Nakamuta; Tetsuya Takano; Takuji Ueno; Akiko Shimada; Sachi Kozawa; Mayumi Okamoto; Yasushi Shimoda; Kanako Oda; Yoshino Wada; Tomoyuki Masuda; Akira Sakakibara; Michihiro Igarashi; Takaki Miyata; Catherine Faivre-Sarrailh; Kosei Takeuchi; Kozo Kaibuchi

The polarization of neurons, which mainly includes the differentiation of axons and dendrites, is regulated by cell-autonomous and non-cell-autonomous factors. In the developing central nervous system, neuronal development occurs in a heterogeneous environment that also comprises extracellular matrices, radial glial cells, and neurons. Although many cell-autonomous factors that affect neuronal polarization have been identified, the microenvironmental cues involved in neuronal polarization remain largely unknown. Here, we show that neuronal polarization occurs in a microenvironment in the lower intermediate zone, where the cell adhesion molecule transient axonal glycoprotein-1 (TAG-1) is expressed in cortical efferent axons. The immature neurites of multipolar cells closely contact TAG-1-positive axons and generate axons. Inhibition of TAG-1-mediated cell-to-cell interaction or its downstream kinase Lyn impairs neuronal polarization. These results show that the TAG-1-mediated cell-to-cell interaction between the unpolarized multipolar cells and the pioneering axons regulates the polarization of multipolar cells partly through Lyn kinase and Rac1.


Developmental Neurobiology | 2009

Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse

Kunie Sakurai; Manabu Toyoshima; Hidehiro Ueda; Yasuo Takeda; Domna Karagogeos; Yasushi Shimoda; Kazutada Watanabe

The neural cell recognition molecule NB‐3, also referred to as contactin‐6, is expressed prominently in the developing nervous system after birth and its deficiency has been shown to cause impairment in motor coordination. Here, we investigated the contribution of NB‐3 to cerebellar development, focusing on lobule 3 where NB‐3 was expressed in granule cells but not in Purkinje cells. In the developing molecular layer, the neural cell recognition molecules TAG‐1, L1, and NB‐3 formed distinct expression zones from the external granule cell layer to the internal granule cell layer (IGL), respectively. The NB‐3‐immunoreactive zone did not overlap with TAG‐1‐immunoreactive zone. By contrast, the L1‐immunoreactive zone overlapped with both the TAG‐1‐ and NB‐3‐immunoreactive zones. NB‐3‐positive puncta overlapped with vesicular glutamate transporter 1, a presynaptic marker and were apposed close to metabotropic glutamate receptor 1A, a postsynaptic marker, indicating that NB‐3 is localized presynaptically at glutamatergic synapses between parallel fibers and Purkinje cells. In NB‐3 knockout mice, L1 immunoreactive signals were increased in the IGL at postnatal day (P) 5, suggesting the increase in the number of immature granule cells of the IGL. In addition, the density of parallel fiber synaptic terminals was reduced in NB‐3 knockout mice relative to wild‐type mice at P5 to P10. In parallel with these findings, caspase‐dependent cell death was significantly increased in the NB‐ 3‐deficient cerebellum at P15. Collectively, our results indicate that NB‐3 deficiency affects synapse formation during postnatal cerebellar development.


Journal of Biological Chemistry | 1999

Cloning and expression of a novel galactoside beta1, 3-glucuronyltransferase involved in the biosynthesis of HNK-1 epitope.

Yasushi Shimoda; Youichi Tajima; Takashi Nagase; Kiyonori Harii; Noriko Osumi; Yutaka Sanai

We isolated a cDNA encoding a novel glucuronyltransferase, designated GlcAT-D, involved in the biosynthesis of the HNK-1 carbohydrate epitope from rat embryo cDNA by the degenerate polymerase chain reaction method. The new cDNA sequence revealed an open reading frame coding for a protein of 324 amino acids with type II transmembrane protein topology. The amino acid sequence of GlcAT-D displayed 50.0% identity to rat GlcAT-P, which is involved in the biosynthesis of the HNK-1 epitope on glycoproteins. Expression of GlcAT-D in COS-7 cells resulted in the formation of the HNK-1 epitope on the cell surface. The enzyme expressed in COS-7 cells transferred a glucuronic acid (GlcA) not only to asialo-orosomucoid, a glycoprotein bearing terminal N-acetyllactosamine structure, but also to paragloboside (lacto-N-neotetraosylceramide), a precursor of the HNK-1 epitope on glycolipids. Furthermore, substrate specificity analysis using a soluble chimeric form of GlcAT-D revealed that GlcAT-D transfers a GlcA not only to Galβ1–4GlcNAcβ1–3Galβ1–4Glc-pyridylamine but also to Galβ1–3GlcNAcβ1–3Galβ1–4Glc-pyridylamine. Enzymatic hydrolysis and Smith degradation of the reaction product indicated that GlcAT-D transfers a GlcA through a β1,3-linkage to a terminal galactose. The GlcAT-D transcripts were detected in embryonic, postnatal, and adult rat brain. In situ hybridization analysis revealed that the expression pattern of GlcAT-D transcript in embryo is similar to that of GlcAT-P, but distinct expression of GlcAT-D was observed in the embryonic pallidum and retina. Regions that expressed GlcAT-D and/or GlcAT-P were always HNK-1-positive, indicating that both GlcATs are involved in the synthesis of the HNK-1 epitope in vivo.


Journal of Biological Chemistry | 2015

Rapid Trimming of Cell Surface Polysialic Acid (PolySia) by Exovesicular Sialidase Triggers Release of Preexisting Surface Neurotrophin.

Mizuki Sumida; Masaya Hane; Uichiro Yabe; Yasushi Shimoda; Oliver M. T. Pearce; Makoto Kiso; Taeko Miyagi; Makoto Sawada; Ajit Varki; Ken Kitajima; Chihiro Sato

Background: Although polySia is known to retain neurotrophins, their releasing mechanism remains unknown. Results: PolySia present on the cell surface of microglia is rapidly cleared by Neu1 sialidase on exovesicles secreted upon inflammatory stimulus, leading to neurotrophin release. Conclusion: Exovesicular Neu1 regulates rapid turnover of polySia and concomitant neurotrophin function. Significance: First demonstration of on-site turnover of polySia and its physiological significance. As acidic glycocalyx on primary mouse microglial cells and a mouse microglial cell line Ra2, expression of polysialic acid (polySia/PSA), a polymer of the sialic acid Neu5Ac (N-acetylneuraminic acid), was demonstrated. PolySia is known to modulate cell adhesion, migration, and localization of neurotrophins mainly on neural cells. PolySia on Ra2 cells disappeared very rapidly after an inflammatory stimulus. Results of knockdown and inhibitor studies indicated that rapid surface clearance of polySia was achieved by secretion of endogenous sialidase Neu1 as an exovesicular component. Neu1-mediated polySia turnover was accompanied by the release of brain-derived neurotrophic factor normally retained by polySia molecules. Introduction of a single oxygen atom change into polySia by exogenous feeding of the non-neural sialic acid Neu5Gc (N-glycolylneuraminic acid) caused resistance to Neu1-induced polySia turnover and also inhibited the associated release of brain-derived neurotrophic factor. These results indicate the importance of rapid turnover of the polySia glycocalyx by exovesicular sialidases in neurotrophin regulation.


Neuron | 2014

Neuronal Ig/Caspr Recognition Promotes the Formation of Axoaxonic Synapses in Mouse Spinal Cord

Soha Ashrafi; J. Nicholas Betley; John D. Comer; Susan Brenner-Morton; Vered Bar; Yasushi Shimoda; Kazutada Watanabe; Elior Peles; Thomas M. Jessell; Julia A. Kaltschmidt

Summary Inhibitory microcircuits are wired with a precision that underlies their complex regulatory roles in neural information processing. In the spinal cord, one specialized class of GABAergic interneurons (GABApre) mediates presynaptic inhibitory control of sensory-motor synapses. The synaptic targeting of these GABAergic neurons exhibits an absolute dependence on proprioceptive sensory terminals, yet the molecular underpinnings of this specialized axoaxonic organization remain unclear. Here, we show that sensory expression of an NB2 (Contactin5)/Caspr4 coreceptor complex, together with spinal interneuron expression of NrCAM/CHL1, directs the high-density accumulation of GABAergic boutons on sensory terminals. Moreover, genetic elimination of NB2 results in a disproportionate stripping of inhibitory boutons from high-density GABApre-sensory synapses, suggesting that the preterminal axons of GABApre neurons compete for access to individual sensory terminals. Our findings define a recognition complex that contributes to the assembly and organization of a specialized GABAergic microcircuit.


Neuron Glia Biology | 2006

Oligodendrocytes regulate formation of nodes of Ranvier via the recognition molecule OMgp

Du Yu Nie; Quan Hong Ma; Janice W S Law; Chern Pang Chia; Narender K. Dhingra; Yasushi Shimoda; Wu Lin Yang; Neng Gong; Qing Wen Chen; Gang Xu; Qidong Hu; Pierce K. H. Chow; Yee-Kong Ng; Eng-Ang Ling; Kazutada Watanabe; Tian-Le Xu; Amyn A. Habib; Melitta Schachner; Zhi-Cheng Xiao

The molecular mechanisms underlying the involvement of oligodendrocytes in formation of the nodes of Ranvier (NORs) remain poorly understood. Here we show that oligodendrocyte-myelin glycoprotein (OMgp) aggregates specifically at NORs. Nodal location of OMgp does not occur along demyelinated axons of either Shiverer or proteolipid protein (PLP) transgenic mice. Over-expression of OMgp in OLN-93 cells facilitates process outgrowth. In transgenic mice in which expression of OMgp is down-regulated, myelin thickness declines, and lateral oligodendrocyte loops at the node-paranode junction are less compacted and even join together with the opposite loops, which leads to shortened nodal gaps. Notably, each of these structural abnormalities plus modest down-regulation of expression of Na(+) channel alpha subunit result in reduced conduction velocity in the spinal cords of the mutant mice. Thus, OMgp that is derived from glia has distinct roles in regulating nodal formation and function during CNS myelination.


Biology Open | 2013

Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites

Oriane Mercati; Anne Danckaert; Gwénaëlle André-Leroux; Marco Bellinzoni; Laura Gouder; Kazutada Watanabe; Yasushi Shimoda; Regis Grailhe; Fabrice de Chaumont; Thomas Bourgeron; Isabelle Cloëz-Tayarani

Summary The neural cell-adhesion molecules contactin 4, contactin 5 and contactin 6 are involved in brain development, and disruptions in contactin genes may confer increased risk for autism spectrum disorders (ASD). We describe a co-culture of rat cortical neurons and HEK293 cells overexpressing and delivering the secreted forms of rat contactin 4–6. We quantified their effects on the length and branching of neurites. Contactin 4–6 effects were different depending on the contactin member and duration of co-culture. At 4 days in culture, contactin 4 and -6 increased the length of neurites, while contactin 5 increased the number of roots. Up to 8 days in culture, contactin 6 progressively increased the length of neurites while contactin 5 was more efficient on neurite branching. We studied the molecular sites of interaction between human contactin 4, -5 or -6 and the human Protein Tyrosine Phosphatase Receptor Gamma (PTPRG), a contactin partner, by modeling their 3D structures. As compared to contactin 4, we observed differences in the Ig2 and Ig3 domains of contactin 5 and -6 with the appearance of an omega loop that could adopt three distinct conformations. However, interactive residues between human contactin 4–6 and PTPRG were strictly conserved. We did not observe any differences in PTPRG binding on contactin 5 and -6 either. Our data suggest that the differential contactin effects on neurite outgrowth do not result from distinct interactions with PTPRG. A better understanding of the contactin cellular properties should help elucidate their roles in ASD.


Developmental Biology | 2009

Deficiency of neural recognition molecule NB-2 affects the development of glutamatergic auditory pathways from the ventral cochlear nucleus to the superior olivary complex in mouse.

Manabu Toyoshima; Kunie Sakurai; Kuniko Shimazaki; Yasuo Takeda; Yasushi Shimoda; Kazutada Watanabe

Neural recognition molecule NB-2/contactin 5 is expressed transiently during the first postnatal week in glutamatergic neurons of the central auditory system. Here, we investigated the effect of NB-2 deficiency on the auditory brainstem in mouse. While almost all principal neurons are wrapped with the calyces of Held in the medial nucleus of the trapezoid body (MNTB) in wild type, 8% of principal neurons in NB-2 knockout (KO) mice lack the calyces of Held at postnatal day (P) 6. At P10 and P15, apoptotic principal neurons were detected in NB-2 KO mice, but not in wild type. Apoptotic cells were also increased in the ventral cochlear nucleus (VCN) of NB-2 KO mice, which contains bushy neurons projecting to the MNTB and the lateral superior olive (LSO). At the age of 1 month, the number of principal neurons in the MNTB and of glutamatergic synapses in the LSO was reduced in NB-2 KO mice. Finally, interpeak latencies for auditory brainstem response waves II-III and III-IV were significantly increased in NB-2 KO mice. Together, these findings suggest that NB-2 deficiency causes a deficit in synapse formation and then induces apoptosis in MNTB and VCN neurons, affecting auditory brainstem function.


Neuroscience Letters | 2010

Synaptic formation in subsets of glutamatergic terminals in the mouse hippocampal formation is affected by a deficiency in the neural cell recognition molecule NB-3

Kunie Sakurai; Manabu Toyoshima; Yasuo Takeda; Yasushi Shimoda; Kazutada Watanabe

The neural cell recognition molecule NB-3, which is also referred to as contactin-6, is a member of the contactin subgroup molecules that are expressed prominently in the developing nervous system after birth. In mice, an NB-3 deficiency impairs motor coordination and reduces the synaptic density between parallel fibers and Purkinje cells in the cerebellum. Here, we studied the role of NB-3 in the formation of glutamatergic synapses in the hippocampal formation. At postnatal day 5, NB-3 immunoreactivity was detected in the subiculum, the stratum lacunosum-moleculare of the CA1 region and the hilus of the dentate gyrus. NB-3 expression in the strata radiatum and oriens was weak, and it was very weak in the granule cell layer of the dentate gyrus, the pyramidal cell layer of regions CA3 to CA1 and the stratum lucidum. NB-3-positive puncta partially overlapped with vesicular glutamate transporter 1 (VGLUT1) and 2 (VGLUT2), excitatory presynaptic markers, but not with vesicular GABA transporter (VGAT), an inhibitory presynaptic marker. The density of VGLUT1 and VGLUT2 puncta in the regions where NB-3 was strongly expressed in wild-type mice was reduced by approximately 20-30% in NB-3 knockout mice relative to wild-type mice, whereas that of VGAT puncta was not affected by NB-3 deficiency. Thus, NB-3 has key roles in the formation of glutamatergic, but not GABAergic, synapses during postnatal development of the hippocampal formation as well as the cerebellum.

Collaboration


Dive into the Yasushi Shimoda's collaboration.

Top Co-Authors

Avatar

Kazutada Watanabe

Nagaoka University of Technology

View shared research outputs
Top Co-Authors

Avatar

Manabu Toyoshima

Nagaoka University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kunie Sakurai

Nagaoka University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youichi Tajima

Meiji Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yutaka Sanai

Institute of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Zhenhui Huang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge