Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasushi Yoshigae is active.

Publication


Featured researches published by Yasushi Yoshigae.


Drug Metabolism and Disposition | 2006

OATP1B1, OATP1B3, AND MRP2 ARE INVOLVED IN HEPATOBILIARY TRANSPORT OF OLMESARTAN, A NOVEL ANGIOTENSIN II BLOCKER

Rie Nakagomi-Hagihara; Daisuke Nakai; Kenji Kawai; Yasushi Yoshigae; Taro Tokui; Takaaki Abe; Toshihiko Ikeda

Hepatic uptake and biliary excretion of olmesartan, a new angiotensin II blocker, were investigated in vitro using human hepatocytes, cells expressing uptake transporters and canalicular membrane vesicles, and in vivo using Eisai hyperbilirubinemic rats (EHBR), inherited multidrug resistance-associated protein (mrp2)-deficient rats. The uptake by human hepatocytes reached saturation with a Michaelis constant (Km) of 29.3 ± 9.9 μM. Both Na+-dependent and Na+-independent uptake of olmesartan by human hepatocytes were observed. The uptake by Na+-independent human liver-specific organic anion transporters OATP1B1 and OATP1B3 expressed in Xenopus laevis oocytes was also saturable, with Km values of 42.6 ± 28.6 and 71.8 ± 21.6 μM, respectively. The Na+-dependent taurocholate-cotransporting polypeptide expressed in HEK 293 cells did not transport olmesartan. The cumulative biliary excretion in EHBR was one-sixth compared with that in Sprague-Dawley rats. ATP-dependent uptake of olmesartan was observed in both human canalicular membrane vesicles (hCMVs) and MRP2-expressing vesicles. An MRP inhibitor, MK-571 ([[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid) completely inhibited the uptake of olmesartan by hCMVs. In conclusion, the hepatic uptake and biliary excretion of olmesartan are mediated by transporters in humans. OATP1B1 and OATP1B3 are involved in hepatic uptake, at least in part, and MRP2 plays a dominant role in the biliary excretion.


Drug Metabolism and Disposition | 2014

Edoxaban Transport via P-Glycoprotein Is a Key Factor for the Drug’s Disposition

Tsuyoshi Mikkaichi; Yasushi Yoshigae; Hiroshi Masumoto; Tomoki Imaoka; Veronika Rozehnal; Thomas Fischer; Noriko Okudaira; Takashi Izumi

Edoxaban (the free base of DU-176b), an oral direct factor Xa inhibitor, is mainly excreted unchanged into urine and feces. Because active membrane transport processes such as active renal secretion, biliary excretion, and/or intestinal secretion, and the incomplete absorption of edoxaban after oral administration have been observed, the involvement of drug transporters in the disposition of edoxaban was investigated. Using a bidirectional transport assay in human colon adenocarcinoma Caco-2 cell monolayers, we observed the vectorial transport of [14C]edoxaban, which was completely inhibited by verapamil, a strong P-glycoprotein (P-gp) inhibitor. In an in vivo study, an increased distribution of edoxaban to the brain was observed in Mdr1a/1b knockout mice when compared with wild-type mice, indicating that edoxaban is a substrate for P-gp. However, there have been no observations of significant transport of edoxaban by renal or hepatic uptake transporters, organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)2, or organic anion transporting polypeptide (OATP)1B1. Edoxaban exhibited no remarkable inhibition of OAT1, OAT3, OCT1, OCT2, OATP1B1, OATP1B3, or P-gp up to 30 μM; therefore, the risk of clinical drug–drug interactions due to any edoxaban-related transporter inhibition seems to be negligible. Our results demonstrate that edoxaban is a substrate of P-gp but not of other major uptake transporters tested. Because metabolism is a minor contributor to the total clearance of edoxaban and strong P-gp inhibitors clearly impact edoxaban transport, the P-gp transport system is a key factor for edoxaban’s disposition.


Journal of Biological Chemistry | 2010

Human carboxymethylenebutenolidase as a bioactivating hydrolase of olmesartan medoxomil in liver and intestine

Tomoko Ishizuka; Izumi Fujimori; Mitsunori Kato; Chisa Noji-Sakikawa; Motoko Saito; Yasushi Yoshigae; Kazuishi Kubota; Atsushi Kurihara; Takashi Izumi; Toshihiko Ikeda; Osamu Okazaki

Olmesartan medoxomil (OM) is a prodrug type angiotensin II type 1 receptor antagonist widely prescribed as an antihypertensive agent. Herein, we describe the identification and characterization of the OM bioactivating enzyme that hydrolyzes the prodrug and converts to its pharmacologically active metabolite olmesartan in human liver and intestine. The protein was purified from human liver cytosol by successive column chromatography and was identified by mass spectrometry to be a carboxymethylenebutenolidase (CMBL) homolog. Human CMBL, whose endogenous function has still not been reported, is a human homolog of Pseudomonas dienelactone hydrolase involved in the bacterial halocatechol degradation pathway. The ubiquitous expression of human CMBL gene transcript in various tissues was observed. The recombinant human CMBL expressed in mammalian cells was clearly shown to activate OM. By comparing the enzyme kinetics and chemical inhibition properties between the recombinant protein and human tissue preparations, CMBL was demonstrated to be the primary OM bioactivating enzyme in the liver and intestine. The recombinant CMBL also converted other prodrugs having the same ester structure as OM, faropenem medoxomil and lenampicillin, to their active metabolites. CMBL exhibited a unique sensitivity to chemical inhibitors, thus, being distinguishable from other known esterases. Site-directed mutagenesis on the putative active residue Cys132 of the recombinant CMBL caused a drastic reduction of the OM-hydrolyzing activity. We report for the first time that CMBL serves as a key enzyme in the bioactivation of OM, hydrolyzing the ester bond of the prodrug type xenobiotics.


Drug Metabolism and Disposition | 2012

Paraoxonase 1 as a Major Bioactivating Hydrolase for Olmesartan Medoxomil in Human Blood Circulation: Molecular Identification and Contribution to Plasma Metabolism

Tomoko Ishizuka; Izumi Fujimori; Atsuko Nishida; Hidetaka Sakurai; Yasushi Yoshigae; Kaori Nakahara; Atsushi Kurihara; Toshihiko Ikeda; Takashi Izumi

Olmesartan medoxomil (OM) is a prodrug-type angiotensin II type 1 receptor antagonist. The OM-hydrolyzing enzyme responsible for prodrug bioactivation was purified from human plasma through successive column chromatography and was molecularly identified through N-terminal amino acid sequencing, which resulted in a sequence of 20 amino acids identical to that of human paraoxonase 1 (PON1). Two recombinant allozymes of human PON1 (PON1192QQ and PON1192RR) were constructed and were clearly demonstrated to hydrolyze OM; hydrolysis by the latter allozyme was slightly faster than that by the former. In addition, we evaluated the contribution of PON1 to OM bioactivation in human plasma. Enzyme kinetic studies demonstrated that OM was hydrolyzed more effectively by the recombinant PON1 proteins than by purified albumin. The OM-hydrolyzing activities of the recombinant PON1 proteins and diluted plasma were greatly reduced in the absence of calcium ions. Immunoprecipitation with anti-PON1 IgG completely abolished the OM-hydrolyzing activity in human plasma, whereas the activity was partially inhibited with anti-albumin IgG. The distribution pattern of the OM-hydrolyzing activity in human serum lipoprotein fractions and lipoprotein-deficient serum was examined and showed that most of the OM-hydrolyzing activity was located in the high-density lipoprotein fraction, with which PON1 is closely associated. In conclusion, we identified PON1 as the OM-bioactivating hydrolase in human plasma on a molecular basis and demonstrated that PON1, but not albumin, plays a major role in OM bioactivation in human plasma.


Drug Metabolism and Disposition | 2013

The Inactivation of Human CYP2E1 by Phenethyl Isothiocyanate, a Naturally Occurring Chemopreventive Agent, and Its Oxidative Bioactivation

Yasushi Yoshigae; Chitra Sridar; Ute M. Kent; Paul F. Hollenberg

Phenethylisothiocyanate (PEITC), a naturally occurring isothiocyanate and potent cancer chemopreventive agent, works by multiple mechanisms, including the inhibition of cytochrome P450 (P450) enzymes, such as CYP2E1, that are involved in the bioactivation of carcinogens. PEITC has been reported to be a mechanism-based inactivator of some P450s. We describe here the possible mechanism for the inactivation of human CYP2E1 by PEITC, as well as the putative intermediate that might be involved in the bioactivation of PEITC. PEITC inactivated recombinant CYP2E1 with a partition ratio of 12, and the inactivation was not inhibited in the presence of glutathione (GSH) and not fully recovered by dialysis. The inactivation of CYP2E1 by PEITC is due to both heme destruction and protein modification, with the latter being the major pathway for inactivation. GSH-adducts of phenethyl isocyanate (PIC) and phenethylamine were detected during the metabolism by CYP2E1, indicating formation of PIC as a reactive intermediate following P450-catalyzed desulfurization of PEITC. Surprisingly, PIC bound covalently to CYP2E1 to form protein adducts but did not inactivate the enzyme. Liquid chromatography mass spectroscopy analysis of the inactivated CYP2E1 apo-protein suggests that a reactive sulfur atom generated during desulfurization of PEITC is involved in the inactivation of CYP2E1. Our data suggest that the metabolism of PEITC by CYP2E1 that results in the inactivation of CYP2E1 may occur by a mechanism similar to that observed with other sulfur-containing compounds, such as parathion. Digestion of the inactivated enzyme and analysis by SEQUEST showed that Cys 268 may be the residue modified by PIC.


Drug Metabolism and Disposition | 2013

Different hydrolases involved in bioactivation of prodrug-type angiotensin receptor blockers: carboxymethylenebutenolidase and carboxylesterase 1

Tomoko Ishizuka; Yasushi Yoshigae; Nobuyuki Murayama; Takashi Izumi

Olmesartan medoxomil (OM) is a prodrug-type angiotensin II type 1 receptor blocker (ARB). We recently identified carboxymethylenebutenolidase homolog (CMBL) as the responsible enzyme for OM bioactivation in humans. In the present study, we compared the bioactivating properties of OM with those of other prodrug-type ARBs, candesartan cilexetil (CC) and azilsartan medoxomil (AM), by focusing on interspecies differences and tissue specificity. In in-vitro experiments with pooled tissue subcellular fractions of mice, rats, monkeys, dogs, and humans, substantial OM-hydrolase activities were observed in cytosols of the liver, intestine, and kidney in all the species tested except for dog intestine, which showed negligible activity, whereas lung cytosols showed relatively low activities compared with the other tissues. AM-hydrolase activities were well correlated with the OM-hydrolase activities. In contrast, liver microsomes exhibited the highest CC-hydrolase activity among various tissue subcellular fractions in all the species tested. As a result of Western blot analysis with the tissue subcellular fractions, the band intensities stained with anti-human CMBL and carboxylesterase 1 (CES1) antibodies well reflected OM- and AM-hydrolase activities and CC-hydrolase activity, respectively, in animals and humans. Recombinant human CMBL and CES1 showed significant AM- and CC-hydrolase activities, respectively, whereas CC hydrolysis was hardly catalyzed with recombinant carboxylesterase 2 (CES2). In conclusion, OM is bioactivated mainly via intestinal and additionally hepatic CMBL not only in humans but also in mice, rats, and monkeys, while CC is bioactivated via hepatic CES1 rather than intestinal enzymes, including CES2. AM is a substrate for CMBL.


Biochemistry | 2013

Role of the Highly Conserved Threonine in Cytochrome P450 2E1: Prevention of H2O2-Induced Inactivation during Electron Transfer

Yasushi Yoshigae; Ute M. Kent; Paul F. Hollenberg

A highly conserved threonine in the I-helix of cytochrome P450s has been suggested to play an important role in dioxygen activation, a critical step for catalytic turnover. However, subsequent studies with some P450s in which this highly conserved threonine was replaced by another residue such as alanine showed that significant catalytic activities were still retained when the variants were compared with the wild type enzymes. These results make the role of this residue unclear. We provide data here that suggest a novel role for this highly conserved threonine (Thr303) in the function of P450 2E1. We found that the P450 2E1 T303A mutant undergoes rapid autoinactivation in the reconstituted system during catalytic turnover when the electrons are provided by NADPH. This inactivation was much faster than that of the wild type P450 2E1 and was prevented by catalase. Both the P450 2E1 wild type and T303A mutants produce hydrogen peroxide during the incubations. The inactivation was accompanied by heme destruction with part of the heme becoming covalently attached to protein. The heme destruction was prevented by catalase or by the presence of substrate. Interestingly, this inactivation occurred much more rapidly in the presence of both an electron transfer system and hydrogen peroxide externally added to the enzyme. This accelerated inactivation during catalytic turnover was also found with a 2B4 T302A mutant, which corresponds to 2E1 T303A. Our results suggest that the conserved threonine in these P450s prevents rapid autoinactivation during the catalytic cycle and that this residue may be highly conserved in P450s since it allows them to remain catalytically active for longer periods of time.


Drug Metabolism and Disposition | 2013

Interindividual Variability of Carboxymethylenebutenolidase Homolog, a Novel Olmesartan Medoxomil Hydrolase, in the Human Liver and Intestine

Tomoko Ishizuka; Veronika Rozehnal; Thomas Fischer; Ayako Kato; Seiko Endo; Yasushi Yoshigae; Atsushi Kurihara; Takashi Izumi

Olmesartan medoxomil (OM) is a prodrug-type angiotensin II type 1 receptor antagonist. OM is rapidly converted into its active metabolite olmesartan by multiple hydrolases in humans, and we recently identified carboxymethylenebutenolidase homolog (CMBL) as one of the OM bioactivating hydrolases. In the present study, we further investigated the interindividual variability of mRNA and protein expression of CMBL and OM-hydrolase activity using 40 individual human liver and 30 intestinal specimens. In the intestinal samples, OM-hydrolase activity strongly correlated with the CMBL protein expression, clearly indicating that CMBL is a major contributor to the prodrug bioactivation in human intestine. The protein and activity were highly distributed in the proximal region (duodenum and jejunum) and decreased to the distal region of the intestine. Although there was high interindividual variability (16-fold) in both the protein and activity in the intestinal segments from the duodenum to colon, the interindividual variability in the duodenum and jejunum was relatively small (3.0- and 2.4-fold, respectively). In the liver samples, the interindividual variability in the protein and activity was 4.1- and 6.8-fold, respectively. No sex differences in the protein and activity were shown in the human liver or intestine. A genetically engineered Y155C mutant of CMBL, which was caused by a single nucleotide polymorphism rs35489000, showed significantly lower OM-hydrolase activity than the wild-type protein although no minor allele was genotyped in the 40 individual liver specimens.


Journal of Pharmacy and Pharmacology | 2010

PEGylation of osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF) results in decreased uptake into rats and human liver.

Motoko Saito-Yabe; Yuji Kasuya; Yasushi Yoshigae; Naotoshi Yamamura; Yukie Suzuki; Nao Fukuda; Masashi Honma; Kazuki Yano; Shinichi Mochizuki; Fumihiko Okada; Akiko Okada; Yuki Nagayama; Eisuke Tsuda; Thomas Fischer; Ursula Höpner; Silvia Zaja; Juergen Mueller; Junichi Okada; Atsushi Kurihara; Toshihiko Ikeda; Osamu Okazaki

Objectives  Our aim was to investigate the effect of PEGylation on the uptake of osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF) into rat liver, kidney and spleen, and human liver.


British Journal of Pharmacology | 2009

Highly frequent anti‐idiotype antibody in cynomolgus monkeys developed against mouse‐derived regions of anti‐Fas antibody humanized by complementarity determining region grafting

M Saito-Yabe; Yasushi Yoshigae; W Takasaki; Atsushi Kurihara; T Ikeda; Osamu Okazaki

Background and purpose:  We investigated the immunogenicity of a humanized anti‐human Fas monoclonal antibody, R‐125224, in cynomolgus monkeys to estimate its efficacy, as well as its toxicity in clinical situations.

Collaboration


Dive into the Yasushi Yoshigae's collaboration.

Top Co-Authors

Avatar

Toshihiko Ikeda

Yokohama College of Pharmacy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge