Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasutaka Sukawa is active.

Publication


Featured researches published by Yasutaka Sukawa.


Cell Reports | 2016

Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma

Marios Giannakis; Xinmeng Jasmine Mu; Sachet A. Shukla; Zhi Rong Qian; Ofir Cohen; Reiko Nishihara; Samira Bahl; Yin Cao; Ali Amin-Mansour; Mai Yamauchi; Yasutaka Sukawa; Chip Stewart; Mara Rosenberg; Kosuke Mima; Kentaro Inamura; Katsuhiko Nosho; Jonathan A. Nowak; Michael S. Lawrence; Edward Giovannucci; Andrew T. Chan; Kimmie Ng; Jeffrey A. Meyerhardt; Eliezer M. Van Allen; Gad Getz; Stacey Gabriel; Eric S. Lander; Catherine J. Wu; Charles S. Fuchs; Shuji Ogino; Levi A. Garraway

Summary Large-scale genomic characterization of tumors from prospective cohort studies may yield new insights into cancer pathogenesis. We performed whole-exome sequencing of 619 incident colorectal cancers (CRCs) and integrated the results with tumor immunity, pathology, and survival data. We identified recurrently mutated genes in CRC, such as BCL9L, RBM10, CTCF, and KLF5, that were not previously appreciated in this disease. Furthermore, we investigated the genomic correlates of immune-cell infiltration and found that higher neoantigen load was positively associated with overall lymphocytic infiltration, tumor-infiltrating lymphocytes (TILs), memory T cells, and CRC-specific survival. The association with TILs was evident even within microsatellite-stable tumors. We also found positive selection of mutations in HLA genes and other components of the antigen-processing machinery in TIL-rich tumors. These results may inform immunotherapeutic approaches in CRC. More generally, this study demonstrates a framework for future integrative molecular epidemiology research in colorectal and other malignancies.


Gut | 2016

Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis

Kosuke Mima; Reiko Nishihara; Zhi Rong Qian; Yin Cao; Yasutaka Sukawa; Jonathan A. Nowak; Juhong Yang; Ruoxu Dou; Yohei Masugi; Mingyang Song; Aleksandar D. Kostic; Marios Giannakis; Susan Bullman; Danny A. Milner; Hideo Baba; Edward Giovannucci; Levi A. Garraway; Gordon J. Freeman; Glenn Dranoff; Wendy S. Garrett; Curtis Huttenhower; Matthew Meyerson; Jeffrey A. Meyerhardt; Andrew T. Chan; Charles S. Fuchs; Shuji Ogino

Objective Accumulating evidence links the intestinal microbiota and colorectal carcinogenesis. Fusobacterium nucleatum may promote colorectal tumour growth and inhibit T cell-mediated immune responses against colorectal tumours. Thus, we hypothesised that the amount of F. nucleatum in colorectal carcinoma might be associated with worse clinical outcome. Design We used molecular pathological epidemiology database of 1069 rectal and colon cancer cases in the Nurses’ Health Study and the Health Professionals Follow-up Study, and measured F. nucleatum DNA in carcinoma tissue. Cox proportional hazards model was used to compute hazard ratio (HR), controlling for potential confounders, including microsatellite instability (MSI, mismatch repair deficiency), CpG island methylator phenotype (CIMP), KRAS, BRAF, and PIK3CA mutations, and LINE-1 hypomethylation (low-level methylation). Results Compared with F. nucleatum-negative cases, multivariable HRs (95% CI) for colorectal cancer-specific mortality in F. nucleatum-low cases and F. nucleatum-high cases were 1.25 (0.82 to 1.92) and 1.58 (1.04 to 2.39), respectively, (p for trend=0.020). The amount of F. nucleatum was associated with MSI-high (multivariable odd ratio (OR), 5.22; 95% CI 2.86 to 9.55) independent of CIMP and BRAF mutation status, whereas CIMP and BRAF mutation were associated with F. nucleatum only in univariate analyses (p<0.001) but not in multivariate analysis that adjusted for MSI status. Conclusions The amount of F. nucleatum DNA in colorectal cancer tissue is associated with shorter survival, and may potentially serve as a prognostic biomarker. Our data may have implications in developing cancer prevention and treatment strategies through targeting GI microflora by diet, probiotics and antibiotics.


International Journal of Cancer | 2015

Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway.

Miki Ito; Shinichi Kanno; Katsuhiko Nosho; Yasutaka Sukawa; Kei Mitsuhashi; Hiroyoshi Kurihara; Hisayoshi Igarashi; Taiga Takahashi; Mami Tachibana; Hiroaki Takahashi; Shinji Yoshii; Toshinao Takenouchi; Tadashi Hasegawa; Kenji Okita; Koichi Hirata; Reo Maruyama; Hiromu Suzuki; Kohzoh Imai; Hiroyuki Yamamoto; Yasuhisa Shinomura

Human gut microbiota is being increasingly recognized as a player in colorectal cancers (CRCs). Evidence suggests that Fusobacterium nucleatum (F. nucleatum) may contribute to disease progression and is associated with CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) in CRCs; however, to date, there are no reports about the relationship between F. nucleatum and molecular features in the early stage of colorectal tumorigenesis. Therefore, we investigated the presence of F. nucleatum in premalignant colorectal lesions. In total, 465 premalignant lesions (343 serrated lesions and 122 non‐serrated adenomas) and 511 CRCs were studied. We determined the presence of F. nucleatum and analyzed its association with molecular features including CIMP, MSI and microRNA‐31 status. F. nucleatum was detected in 24% of hyperplastic polyps, 35% of sessile serrated adenomas (SSAs), 30% of traditional serrated adenomas (TSAs) and 33% of non‐serrated adenomas. F. nucleatum was more frequently detected in CIMP‐high premalignant lesions than in CIMP‐low/zero lesions (p = 0.0023). In SSAs, F. nucleatum positivity increased gradually from sigmoid colon to cecum (p = 0.042). F. nucleatum positivity was significantly higher in CRCs (56%) than in premalignant lesions of any histological type (p < 0.0001). In conclusion, F. nucleatum was identified in premalignant colorectal lesions regardless of histopathology but was more frequently associated with CIMP‐high lesions. Moreover, F. nucleatum positivity increased according to histological grade, suggesting that it may contribute to the progression of colorectal neoplasia. Our data also indicate that F. nucleatum positivity in SSAs may support the “colorectal continuum” concept.


Modern Pathology | 2011

Epigenetic inactivation of calcium-sensing receptor in colorectal carcinogenesis.

Keiichi Hizaki; Hiroyuki Yamamoto; Hiroaki Taniguchi; Yasushi Adachi; Mayumi Nakazawa; Tokuma Tanuma; Norihiro Kato; Yasutaka Sukawa; Jose V Sanchez; Hiromu Suzuki; Shigeru Sasaki; Kohzoh Imai; Yasuhisa Shinomura

Ca2+ is a chemopreventive agent for colon cancer. Ion transport systems are often altered in human cancer. The aim of this study was to clarify the alterations of calcium-sensing receptor (CASR), a member of the G protein-coupled receptor family, in colorectal carcinogenesis. We analyzed the expression of CASR in colorectal cancer cell lines and in cancer and adenoma tissues by RT-PCR and immunostaining. In addition, we analyzed methylation of the CASR promoter by using bisulfite sequence analysis and methylation-specific PCR. CASR mRNA and protein expression was significantly downregulated in most of the cancer cell lines. CpG islands were densely methylated in cancer cell lines with reduced CASR mRNA expression. Treatment with a demethylating agent, 5-aza-2′-deoxycytidine, and/or a histone deacetylase inhibitor, trichostatin A, restored CASR expression in the cancer cell lines. Disruption of CASR expression in CASR-unmethylated HCT-8 cells blocked the enhancing effect of Ca2+ on the cytotoxic response to 5-fluorouracil. CASR expression was observed in normal colonic epithelial cells and was retained in most adenoma tissues. CASR mRNA and protein expression was significantly downregulated in cancer tissues. There was an inverse relationship between CASR expression and degree of differentiation. Immunohistochemical CASR staining was reduced more predominantly in less-differentiated cancer tissues and/or in cancer cells at the invasive front, where nuclear/cytoplasmic β-catenin was often localized. CASR methylation was detected in 69% of colorectal cancer tissues and 90% of lymph node metastatic tissues and was significantly correlated with reduced CASR expression. CASR methylation was also detected in 32% of advanced adenoma tissues but was detected in only 9% of adenoma tissues and was not detected in hyperplastic polyp tissues. CASR methylation seems to occur at an early stage and progress in colorectal carcinogenesis. The results suggest that epigenetic inactivation of CASR has an important role in colorectal carcinogenesis.


World Journal of Gastroenterology | 2016

Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer

Katsuhiko Nosho; Yasutaka Sukawa; Yasushi Adachi; Miki Ito; Kei Mitsuhashi; Hiroyoshi Kurihara; Shinichi Kanno; Itaru Yamamoto; Keisuke Ishigami; Hisayoshi Igarashi; Reo Maruyama; Kohzoh Imai; Hiroyuki Yamamoto; Yasuhisa Shinomura

The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity. Fusobacterium species are part of the human oral and intestinal microbiota. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue. Using 511 colorectal carcinomas from Japanese patients, we assessed the presence of F. nucleatum. Our results showed that the frequency of F. nucleatum positivity in the Japanese colorectal cancer was 8.6% (44/511), which was lower than that in United States cohort studies (13%). Similar to the United States studies, F. nucleatum positivity in Japanese colorectal cancers was significantly associated with microsatellite instability (MSI)-high status. Regarding the immune response in colorectal cancer, high levels of infiltrating T-cell subsets (i.e., CD3+, CD8+, CD45RO+, and FOXP3+ cells) have been associated with better patient prognosis. There is also evidence to indicate that molecular features of colorectal cancer, especially MSI, influence T-cell-mediated adaptive immunity. Concerning the association between the gut microbiome and immunity, F. nucleatum has been shown to expand myeloid-derived immune cells, which inhibit T-cell proliferation and induce T-cell apoptosis in colorectal cancer. This finding indicates that F. nucleatum possesses immunosuppressive activities by inhibiting human T-cell responses. Certain microRNAs are induced during the macrophage inflammatory response and have the ability to regulate host-cell responses to pathogens. MicroRNA-21 increases the levels of IL-10 and prostaglandin E2, which suppress antitumor T-cell-mediated adaptive immunity through the inhibition of the antigen-presenting capacities of dendritic cells and T-cell proliferation in colorectal cancer cells. Thus, emerging evidence may provide insights for strategies to target microbiota, immune cells and tumor molecular alterations for colorectal cancer prevention and treatment. Further investigation is needed to clarify the association of Fusobacterium with T-cells and microRNA expressions in colorectal cancer.


Carcinogenesis | 2014

Association of microRNA-31 with BRAF mutation, colorectal cancer survival and serrated pathway

Katsuhiko Nosho; Hisayoshi Igarashi; Masanori Nojima; Miki Ito; Reo Maruyama; Shinji Yoshii; Yasutaka Sukawa; Masashi Mikami; Wakana Sumioka; Eiichiro Yamamoto; Sei Kurokawa; Yasushi Adachi; Hiroaki Takahashi; Hiroyuki Okuda; Takaya Kusumi; Masao Hosokawa; Masahiro Fujita; Tadashi Hasegawa; Kenji Okita; Koichi Hirata; Hiromu Suzuki; Hiroyuki Yamamoto; Yasuhisa Shinomura

BRAF is an important gene in colorectal cancers (CRCs) that is associated with molecular characterization and resistance to targeted therapy. Although microRNAs (miRNAs) are useful biomarkers of various cancers, the association between miRNA and BRAF in CRCs is undefined. Therefore, this study was conducted to identify a relationship between specific miRNA molecules and BRAF mutation in CRCs and serrated lesions. miRNA array was used for the measurement of 760 miRNAs in 29 CRCs. To assess the identified miRNAs, quantitative reverse transcription-PCR was performed on 721 CRCs, 381 serrated lesions and 251 non-serrated adenomas. Moreover, proliferation and invasion assays were conducted using cell lines. miRNA array analysis revealed that microRNA-31 (miR-31)-5p was the most up-regulated miRNA in CRCs with mutated BRAF (V600E) compared with CRCs possessing wild-type BRAF (including cases with KRAS mutation). High miR-31 expression was associated with BRAF and KRAS mutations and proximal location (P < 0.0001). High miR-31 expression was related to cancer-specific mortality [multivariate hazard ratio = 2.06, 95% confidence interval: 1.36-3.09, P = 0.0008]. Functional analysis demonstrated that miR-31 inhibitor decreased cell invasion and proliferation. With regard to serrated lesions, high miR-31 expression was less frequently detected in hyperplastic polyps compared with other serrated lesions. In conclusion, associations were identified between miR-31, BRAF and prognosis in CRC. Transfection of miR-31 inhibitor had an antitumour effect. Thus, miR-31 may be a promising diagnostic biomarker and therapeutic target in colon cancers. Moreover, high miR-31 expression in serrated lesions suggested that miR-31 may be a key molecule in serrated pathway.


Gut | 2016

Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status.

Mingyang Song; Reiko Nishihara; Molin Wang; Andrew T. Chan; Zhi Rong Qian; Kentaro Inamura; Xuehong Zhang; Kimmie Ng; Sun A. Kim; Kosuke Mima; Yasutaka Sukawa; Katsuhiko Nosho; Charles S. Fuchs; Edward Giovannucci; Kana Wu; Shuji Ogino

Objective Evidence suggests protective effects of vitamin D and antitumour immunity on colorectal cancer risk. Immune cells in tumour microenvironment can convert 25-hydroxyvitamin D [25(OH)D] to bioactive 1α,25-dihydroxyvitamin D3, which influences neoplastic and immune cells as an autocrine and paracrine factor. Thus, we hypothesised that the inverse association between vitamin D and colorectal cancer risk might be stronger for cancers with high-level immune response than those with low-level immune response. Design We designed a nested case–control study (318 rectal and colon carcinoma cases and 624 matched controls) within the Nurses’ Health Study and Health Professionals Follow-up Study using molecular pathological epidemiology database. Multivariable conditional logistic regression was used to assess the association of plasma 25(OH)D with tumour subtypes according to the degree of lymphocytic reaction, tumour-infiltrating T cells (CD3+, CD8+, CD45RO+ (PTPRC) and FOXP3+ cells), microsatellite instability or CpG island methylator phenotype. Results The association of plasma 25(OH)D with colorectal carcinoma differed by the degree of intratumoural periglandular reaction (p for heterogeneity=0.001); high 25(OH)D was associated with lower risk of tumour with high-level reaction (comparing the highest versus lowest tertile: OR 0.10; 95% CI 0.03 to 0.35; p for trend<0.001), but not risk of tumour with lower-level reaction (p for trend>0.50). A statistically non-significant difference was observed for the associations of 25(OH)D with tumour subtypes according to CD3+ T cell density (p for heterogeneity=0.03; adjusted statistical significance level of α=0.006). Conclusions High plasma 25(OH)D level is associated with lower risk of colorectal cancer with intense immune reaction, supporting a role of vitamin D in cancer immunoprevention through tumour–host interaction.


Cell Reports | 2016

Erratum: Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma (Cell Reports (2016) 15(4) (857–865) (S2211124716303643) (10.1016/j.celrep.2016.03.075))

Marios Giannakis; Xinmeng Jasmine Mu; Sachet A. Shukla; Zhi Rong Qian; Ofir Cohen; Reiko Nishihara; Samira Bahl; Yin Cao; Ali Amin-Mansour; Mai Yamauchi; Yasutaka Sukawa; Chip Stewart; Mara Rosenberg; Kosuke Mima; Kentaro Inamura; Katsuhiko Nosho; Jonathan A. Nowak; Michael S. Lawrence; Edward Giovannucci; Andrew T. Chan; Kimmie Ng; Jeffrey A. Meyerhardt; Eliezer M. Van Allen; Gad Getz; Stacey Gabriel; Eric S. Lander; Catherine J. Wu; Charles S. Fuchs; Shuji Ogino; Levi A. Garraway

Marios Giannakis, Xinmeng Jasmine Mu, Sachet A. Shukla, Zhi Rong Qian, Ofir Cohen, Reiko Nishihara, Samira Bahl, Yin Cao, Ali Amin-Mansour, Mai Yamauchi, Yasutaka Sukawa, Chip Stewart, Mara Rosenberg, Kosuke Mima, Kentaro Inamura, Katsuhiko Nosho, Jonathan A. Nowak, Michael S. Lawrence, Edward L. Giovannucci, Andrew T. Chan, Kimmie Ng, Jeffrey A. Meyerhardt, Eliezer M. Van Allen, Gad Getz, Stacey B. Gabriel, Eric S. Lander, Catherine J. Wu, Charles S. Fuchs, Shuji Ogino,* and Levi A. Garraway* *Correspondence: [email protected] (S.O.), [email protected] (L.A.G.) http://dx.doi.org/10.1016/j.celrep.2016.10.009


Digestion | 2014

HER2 expression and PI3K-Akt pathway alterations in gastric cancer.

Yasutaka Sukawa; Hiroyuki Yamamoto; Katsuhiko Nosho; Miki Ito; Hisayoshi Igarashi; Kei Mitsuhashi; Yasutaka Matsunaga; Taiga Takahashi; Masashi Mikami; Yasushi Adachi; Hiromu Suzuki; Yasuhisa Shinomura

The anti-HER2 antibody trastuzumab has led to an era of personalized therapy in gastric cancer (GC). As a result, HER2 expression has become a major concern in GC. HER2 overexpression is seen in 7-34% of GC cases. Trastuzumab is an antibody that targets the HER2 extracellular domain and induces antibody-dependent cellular cytotoxicity and inhibition of the HER2 downstream signals. Mechanisms of resistance to trastuzumab have been reported in breast cancer. There are various mechanisms underlying trastuzumab resistance, such as alterations of HER2 structure or surroundings, dysregulation of HER2 downstream signal effectors and interaction of HER2 with other membrane receptors. The PI3K-Akt pathway is one of the main downstream signaling pathways of HER2. It is well known that PIK3CA mutations and phosphate and tensin homolog (PTEN) inactivation cause over-activation of the downstream signal without an upstream signal activation. Frequencies of PIK3CA mutations and PTEN inactivation have been reported to be 4-25 and 16-77%, respectively. However, little is known about the association between HER2 expression and PI3K-Akt pathway alterations in GC. We have found that HER2 over-expression was significantly correlated with pAkt expression in GC tissues. Furthermore, pAkt expression was correlated with poor prognosis. These results suggest that the PI3K-Akt pathway plays an important role in HER2-positive GC. Moreover, PIK3CA mutations and/or PTEN inactivation might affect the effectiveness of HER2-targeting therapy. Hence, it is necessary to clarify not only HER2 alterations but also PI3K-Akt pathway alterations for HER2-targeting therapy in GC. This review will introduce recent investigations and consider the current status of HER2-targeted therapy for treatment of GC.


Genes & Development | 2015

LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans

Ho Chou Tu; Sarah Schwitalla; Zhi Rong Qian; Grace S. LaPier; Alena Yermalovich; Yuan Chieh Ku; Shann Ching Chen; Srinivas R. Viswanathan; Hao Zhu; Reiko Nishihara; Kentaro Inamura; Sun A. Kim; Teppei Morikawa; Kosuke Mima; Yasutaka Sukawa; Juhong Yang; Gavin Meredith; Charles S. Fuchs; Shuji Ogino; George Q. Daley

Colorectal cancer (CRC) remains a major contributor to cancer-related mortality. LIN28A and LIN28B are highly related RNA-binding protein paralogs that regulate biogenesis of let-7 microRNAs and influence development, metabolism, tissue regeneration, and oncogenesis. Here we demonstrate that overexpression of either LIN28 paralog cooperates with the Wnt pathway to promote invasive intestinal adenocarcinoma in murine models. When LIN28 alone is induced genetically, half of the resulting tumors harbor Ctnnb1 (β-catenin) mutation. When overexpressed in Apc(Min/+) mice, LIN28 accelerates tumor formation and enhances proliferation and invasiveness. In conditional genetic models, enforced expression of a LIN28-resistant form of the let-7 microRNA reduces LIN28-induced tumor burden, while silencing of LIN28 expression reduces tumor volume and increases tumor differentiation, indicating that LIN28 contributes to tumor maintenance. We detected aberrant expression of LIN28A and/or LIN28B in 38% of a large series of human CRC samples (n = 595), where LIN28 expression levels were associated with invasive tumor growth. Our late-stage CRC murine models and analysis of primary human tumors demonstrate prominent roles for both LIN28 paralogs in promoting CRC growth and progression and implicate the LIN28/let-7 pathway as a therapeutic target.

Collaboration


Dive into the Yasutaka Sukawa's collaboration.

Top Co-Authors

Avatar

Katsuhiko Nosho

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroyuki Yamamoto

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiromu Suzuki

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar

Miki Ito

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasushi Adachi

Kansai Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge