Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasutaka Tsubokura is active.

Publication


Featured researches published by Yasutaka Tsubokura.


Genetics | 2009

Map-based cloning of the gene associated with the soybean maturity locus E3.

Satoshi Watanabe; Rumiko Hideshima; Zhengjun Xia; Yasutaka Tsubokura; Shusei Sato; Yumi Nakamoto; Naoki Yamanaka; Ryoji Takahashi; Masao Ishimoto; Toyoaki Anai; Satoshi Tabata; Kyuya Harada

Photosensitivity plays an essential role in the response of plants to their changing environments throughout their life cycle. In soybean [Glycine max (L.) Merrill], several associations between photosensitivity and maturity loci are known, but only limited information at the molecular level is available. The FT3 locus is one of the quantitative trait loci (QTL) for flowering time that corresponds to the maturity locus E3. To identify the gene responsible for this QTL, a map-based cloning strategy was undertaken. One phytochrome A gene (GmPhyA3) was considered a strong candidate for the FT3 locus. Allelism tests and gene sequence comparisons showed that alleles of Misuzudaizu (FT3/FT3; JP28856) and Harosoy (E3/E3; PI548573) were identical. The GmPhyA3 alleles of Moshidou Gong 503 (ft3/ft3; JP27603) and L62-667 (e3/e3; PI547716) showed weak or complete loss of function, respectively. High red/far-red (R/FR) long-day conditions enhanced the effects of the E3/FT3 alleles in various genetic backgrounds. Moreover, a mutant line harboring the nonfunctional GmPhyA3 flowered earlier than the original Bay (E3/E3; PI553043) under similar conditions. These results suggest that the variation in phytochrome A may contribute to the complex systems of soybean flowering response and geographic adaptation.


Genetics | 2011

A Map-Based Cloning Strategy Employing a Residual Heterozygous Line Reveals that the GIGANTEA Gene Is Involved in Soybean Maturity and Flowering

Satoshi Watanabe; Zhengjun Xia; Rumiko Hideshima; Yasutaka Tsubokura; Shusei Sato; Naoki Yamanaka; Ryoji Takahashi; Toyoaki Anai; Satoshi Tabata; Keisuke Kitamura; Kyuya Harada

Flowering is indicative of the transition from vegetative to reproductive phase, a critical event in the life cycle of plants. In soybean (Glycine max), a flowering quantitative trait locus, FT2, corresponding to the maturity locus E2, was detected in recombinant inbred lines (RILs) derived from the varieties “Misuzudaizu” (ft2/ft2; JP28856) and “Moshidou Gong 503” (FT2/FT2; JP27603). A map-based cloning strategy using the progeny of a residual heterozygous line (RHL) from the RIL was employed to isolate the gene responsible for this quantitative trait locus. A GIGANTEA ortholog, GmGIa (Glyma10g36600), was identified as a candidate gene. A common premature stop codon at the 10th exon was present in the Misuzudaizu allele and in other near isogenic lines (NILs) originating from Harosoy (e2/e2; PI548573). Furthermore, a mutant line harboring another premature stop codon showed an earlier flowering phenotype than the original variety, Bay (E2/E2; PI553043). The e2/e2 genotype exhibited elevated expression of GmFT2a, one of the florigen genes that leads to early flowering. The effects of the E2 allele on flowering time were similar among NILs and constant under high (43°N) and middle (36°N) latitudinal regions in Japan. These results indicate that GmGIa is the gene responsible for the E2 locus and that a null mutation in GmGIa may contribute to the geographic adaptation of soybean.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering

Zhengjun Xia; Satoshi Watanabe; Tetsuya Yamada; Yasutaka Tsubokura; Hiroko Nakashima; Hong Zhai; Toyoaki Anai; Shusei Sato; Toshimasa Yamazaki; Shixiang Lü; Hongyan Wu; Satoshi Tabata; Kyuya Harada

The complex and coordinated regulation of flowering has high ecological and agricultural significance. The maturity locus E1 has a large impact on flowering time in soybean, but the molecular basis for the E1 locus is largely unknown. Through positional cloning, we delimited the E1 locus to a 17.4-kb region containing an intron-free gene (E1). The E1 protein contains a putative bipartite nuclear localization signal and a region distantly related to B3 domain. In the recessive allele, a nonsynonymous substitution occurred in the putative nuclear localization signal, leading to the loss of localization specificity of the E1 protein and earlier flowering. The early-flowering phenotype was consistently observed in three ethylmethanesulfonate-induced mutants and two natural mutations that harbored a premature stop codon or a deletion of the entire E1 gene. E1 expression was significantly suppressed under short-day conditions and showed a bimodal diurnal pattern under long-day conditions, suggesting its response to photoperiod and its dominant effect induced by long day length. When a functional E1 gene was transformed into the early-flowering cultivar Kariyutaka with low E1 expression, transgenic plants carrying exogenous E1 displayed late flowering. Furthermore, the transcript abundance of E1 was negatively correlated with that of GmFT2a and GmFT5a, homologues of FLOWERING LOCUS T that promote flowering. These findings demonstrated the key role of E1 in repressing flowering and delaying maturity in soybean. The molecular identification of the maturity locus E1 will contribute to our understanding of the molecular mechanisms by which a short-day plant regulates flowering time and maturity.


DNA Research | 2008

Sequencing and analysis of approximately 40,000 soybean cDNA clones from a full-length-enriched cDNA library.

Taishi Umezawa; Tetsuya Sakurai; Yasushi Totoki; Atsushi Toyoda; Motoaki Seki; Atsushi Ishiwata; Kenji Akiyama; Atsushi Kurotani; Takuhiro Yoshida; Keiichi Mochida; Mie Kasuga; Daisuke Todaka; Kyonoshin Maruyama; Kazuo Nakashima; Akiko Enju; Saho Mizukado; Selina Ahmed; Kyoko Yoshiwara; Kyuya Harada; Yasutaka Tsubokura; Masaki Hayashi; Shusei Sato; Toyoaki Anai; Masao Ishimoto; Hideyuki Funatsuki; Masayoshi Teraishi; Mitsuru Osaki; Takuro Shinano; Ryo Akashi; Yoshiyuki Sakaki

A large collection of full-length cDNAs is essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. We obtained a total of 39 936 soybean cDNA clones (GMFL01 and GMFL02 clone sets) in a full-length-enriched cDNA library which was constructed from soybean plants that were grown under various developmental and environmental conditions. Sequencing from 5′ and 3′ ends of the clones generated 68 661 expressed sequence tags (ESTs). The EST sequences were clustered into 22 674 scaffolds involving 2580 full-length sequences. In addition, we sequenced 4712 full-length cDNAs. After removing overlaps, we obtained 6570 new full-length sequences of soybean cDNAs so far. Our data indicated that 87.7% of the soybean cDNA clones contain complete coding sequences in addition to 5′- and 3′-untranslated regions. All of the obtained data confirmed that our collection of soybean full-length cDNAs covers a wide variety of genes. Comparative analysis between the derived sequences from soybean and Arabidopsis, rice or other legumes data revealed that some specific genes were involved in our collection and a large part of them could be annotated to unknown functions. A large set of soybean full-length cDNA clones reported in this study will serve as a useful resource for gene discovery from soybean and will also aid a precise annotation of the soybean genome.


DNA Research | 2007

An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using A single F2 population.

Zhengjun Xia; Yasutaka Tsubokura; Masako Hoshi; Masayoshi Hanawa; Chizuru Yano; Kayo Okamura; Talaat A. Ahmed; Toyoaki Anai; Satoshi Watanabe; Masaki Hayashi; Takashi Kawai; Khwaja Hossain; Hirokazu Masaki; Kazumi Asai; Naoki Yamanaka; Nakao Kubo; Koh-ichi Kadowaki; Yoshiaki Nagamura; Masahiro Yano; Takuji Sasaki; Kyuya Harada

Abstract Soybean [Glycine max (L.) Merrill] is the most important leguminous crop in the world due to its high contents of high-quality protein and oil for human and animal consumption as well as for industrial uses. An accurate and saturated genetic linkage map of soybean is an essential tool for studies on modern soybean genomics. In order to update the linkage map of a F2 population derived from a cross between Misuzudaizu and Moshidou Gong 503 and to make it more informative and useful to the soybean genome research community, a total of 318 AFLP, 121 SSR, 108 RFLP, and 126 STS markers were newly developed and integrated into the framework of the previously described linkage map. The updated genetic map is composed of 509 RFLP, 318 SSR, 318 AFLP, 97 AFLP-derived STS, 29 BAC-end or EST-derived STS, 1 RAPD, and five morphological markers, covering a map distance of 3080 cM (Kosambi function) in 20 linkage groups (LGs). To our knowledge, this is presently the densest linkage map developed from a single F2 population in soybean. The average intermarker distance was reduced to 2.41 from 5.78 cM in the earlier version of the linkage map. Most SSR and RFLP markers were relatively evenly distributed among different LGs in contrast to the moderately clustered AFLP markers. The number of gaps of more than 25 cM was reduced to 6 from 19 in the earlier version of the linkage map. The coverage of the linkage map was extended since 17 markers were mapped beyond the distal ends of the previous linkage map. In particular, 17 markers were tagged in a 5.7 cM interval between CE47M5a and Satt100 on LG C2, where several important QTLs were clustered. This newly updated soybean linkage map will enable to streamline positional cloning of agronomically important trait locus genes, and promote the development of physical maps, genome sequencing, and other genomic research activities.


BMC Plant Biology | 2013

Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean

Meilan Xu; Zeheng Xu; Baohui Liu; Fanjiang Kong; Yasutaka Tsubokura; Satoshi Watanabe; Zhengjun Xia; Kyuya Harada; Akira Kanazawa; Testuya Yamada; Jun Abe

BackgroundAbsence of or low sensitivity to photoperiod is necessary for short-day crops, such as rice and soybean, to adapt to high latitudes. Photoperiod insensitivity in soybeans is controlled by two genetic systems and involves three important maturity genes: E1, a repressor for two soybean orthologs of Arabidopsis FLOWERING LOCUS T (GmFT2a and GmFT5a), and E3 and E4, which are phytochrome A genes. To elucidate the diverse mechanisms underlying photoperiod insensitivity in soybean, we assessed the genotypes of four maturity genes (E1 through E4) in early-flowering photoperiod-insensitive cultivars and their association with post-flowering responses.ResultsWe found two novel dysfunctional alleles in accessions originally considered to have a dominant E3 allele according to known DNA markers. The E3 locus, together with E1 and E4, contained multiple dysfunctional alleles. We identified 15 multi-locus genotypes, which we subdivided into 6 genotypic groups by classifying their alleles by function. Of these, the e1-as/e3/E4 genotypic group required an additional novel gene (different from E1, E3, and E4) to condition photoperiod insensitivity. Despite their common pre-flowering photoperiod insensitivity, accessions with different multi-locus genotypes responded differently to the post-flowering photoperiod. Cultivars carrying E3 or E4 were sensitive to photoperiod for post-flowering characteristics, such as reproductive period and stem growth after flowering. The phytochrome A–regulated expression of the determinate growth habit gene Dt1, an ortholog of Arabidopsis TERMINAL FLOWER1, was involved in the persistence of the vegetative activity at the stem apical meristem of flower-induced plants under long-day conditions.ConclusionsDiverse genetic mechanisms underlie photoperiod insensitivity in soybean. At least three multi-locus genotypes consisting of various allelic combinations at E1, E3, and E4 conferred pre-flowering photoperiod insensitivity to soybean cultivars but led to different responses to photoperiod during post-flowering vegetative and reproductive development. The phyA genes E3 and E4 are major controllers underlying not only pre-flowering but also post-flowering photoperiod responses. The current findings improve our understanding of genetic diversity in pre-flowering photoperiod insensitivity and mechanisms of post-flowering photoperiod responses in soybean.


Annals of Botany | 2014

Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean

Yasutaka Tsubokura; Satoshi Watanabe; Zhengjun Xia; Hiroyuki Kanamori; Harumi Yamagata; Akito Kaga; Yuichi Katayose; Jun Abe; Masao Ishimoto; Kyuya Harada

BACKGROUND AND AIMS The timing of flowering has a direct impact on successful seed production in plants. Flowering of soybean (Glycine max) is controlled by several E loci, and previous studies identified the genes responsible for the flowering loci E1, E2, E3 and E4. However, natural variation in these genes has not been fully elucidated. The aims of this study were the identification of new alleles, establishment of allele diagnoses, examination of allelic combinations for adaptability, and analysis of the integrated effect of these loci on flowering. METHODS The sequences of these genes and their flanking regions were determined for 39 accessions by primer walking. Systematic discrimination among alleles was performed using DNA markers. Genotypes at the E1-E4 loci were determined for 63 accessions covering several ecological types using DNA markers and sequencing, and flowering times of these accessions at three sowing times were recorded. KEY RESULTS A new allele with an insertion of a long interspersed nuclear element (LINE) at the promoter of the E1 locus (e1-re) was identified. Insertion and deletion of 36 bases in the eighth intron (E2-in and E2-dl) were observed at the E2 locus. Systematic discrimination among the alleles at the E1-E3 loci was achieved using PCR-based markers. Allelic combinations at the E1-E4 loci were found to be associated with ecological types, and about 62-66 % of variation of flowering time could be attributed to these loci. CONCLUSIONS The study advances understanding of the combined roles of the E1-E4 loci in flowering and geographic adaptation, and suggests the existence of unidentified genes for flowering in soybean.


Breeding Science | 2012

Evaluation of soybean germplasm conserved in NIAS genebank and development of mini core collections

Akito Kaga; Takehiko Shimizu; Satoshi Watanabe; Yasutaka Tsubokura; Yuichi Katayose; Kyuya Harada; Duncan A. Vaughan; Norihiko Tomooka

Genetic variation and population structure among 1603 soybean accessions, consisted of 832 Japanese landraces, 109 old and 57 recent Japanese varieties, 341 landrace from 16 Asian countries and 264 wild soybean accessions, were characterized using 191 SNP markers. Although gene diversity of Japanese soybean germplasm was slight lower than that of exotic soybean germplasm, population differentiation and clustering analyses indicated clear genetic differentiation among Japanese cultivated soybeans, exotic cultivated soybeans and wild soybeans. Nine hundred ninety eight Japanese accessions were separated to a certain extent into groups corresponding to their agro-morphologic characteristics such as photosensitivity and seed characteristics rather than their geographical origin. Based on the assessment of the SNP markers and several agro-morphologic traits, accessions that retain gene diversity of the whole collection were selected to develop several soybean sets of different sizes using an heuristic approach; a minimum of 12 accessions can represent the observed gene diversity; a mini-core collection of 96 accession can represent a major proportion of both geographic origin and agro-morphologic trait variation. These selected sets of germplasm will provide an effective platform for enhancing soybean diversity studies and assist in finding novel traits for crop improvement.


Breeding Science | 2012

DaizuBase, an integrated soybean genome database including BAC-based physical maps

Yuichi Katayose; Hiroyuki Kanamori; Michihiko Shimomura; Hajime Ohyanagi; Hiroshi Ikawa; Hiroshi Minami; Michie Shibata; Tomoko Ito; Kanako Kurita; Kazue Ito; Yasutaka Tsubokura; Akito Kaga; Jianzhong Wu; Takashi Matsumoto; Kyuya Harada; Takuji Sasaki

Soybean [Glycine max (L) Merrill] is one of the most important leguminous crops and ranks fourth after to rice, wheat and maize in terms of world crop production. Soybean contains abundant protein and oil, which makes it a major source of nutritious food, livestock feed and industrial products. In Japan, soybean is also an important source of traditional staples such as tofu, natto, miso and soy sauce. The soybean genome was determined in 2010. With its enormous size, physical mapping and genome sequencing are the most effective approaches towards understanding the structure and function of the soybean genome. We constructed bacterial artificial chromosome (BAC) libraries from the Japanese soybean cultivar, Enrei. The end-sequences of approximately 100,000 BAC clones were analyzed and used for construction of a BAC-based physical map of the genome. BLAST analysis between Enrei BAC-end sequences and the Williams82 genome was carried out to increase the saturation of the map. This physical map will be used to characterize the genome structure of Japanese soybean cultivars, to develop methods for the isolation of agronomically important genes and to facilitate comparative soybean genome research. The current status of physical mapping of the soybean genome and construction of database are presented.


Euphytica | 2006

Molecular characterization of a β-conglycinin deficient soybean

Yasutaka Tsubokura; Makita Hajika; Kyuya Harada

SummaryThe soybean seed storage protein β-conglycinin has a low amino acid score, shows lower functional gelling properties compared with glycinin and contains a major allergen. The wild soybean (Glycine soja Sieb et Zucc.) QT2 lacks all the subunits of β-conglycinin, and this deficiency is controlled by a single dominant gene Scg-1 (suppressor of β-conglycinin). Scg-1 was introduced into a soybean cultivar Fukuyutaka from QT2 and this near-isogenic line was designated as QY7-25. Segregation analyses of the progeny derived from a cross between QY7-25 and the wild type did not show any significant changes caused by Scg-1 in the germination ratio and seed weight. Low amounts of mRNAs for the α ’, α and β subunits of β-conglycinin were detected by RT-PCR in QY7-25. We revealed that an α subunit mRNA expressed from a region which replaced with mutant line in the near-isogenic line QY7-25 by single nucleotide polymorphisms analysis. In addition, an abnormal splicing event in a cDNA clone for the β subunit isolated from immature seed of QY7-25 was observed. Southern analysis using the coding region of α ’ subunit gene as a probe revealed a polymorphism between QY7-25 and wild type and this genotypes co-segregate with the deficiency of β-conglycinin subunits. These results suggest that the β-conglycinin deficiency might be controlled by a claster region of β-conglycinin subunit genes. In the present study, no agronomical disadvantage in QY7-25 was observed, confirming that Scg-1 is a valuable gene for soybean breeding.

Collaboration


Dive into the Yasutaka Tsubokura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhengjun Xia

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makita Hajika

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Naoki Yamanaka

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge