Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuto Noda is active.

Publication


Featured researches published by Yasuto Noda.


Journal of the American Chemical Society | 2009

Halide-Stabilized LiBH4, a Room-Temperature Lithium Fast-Ion Conductor

Hideki Maekawa; Motoaki Matsuo; Hitoshi Takamura; Mariko Ando; Yasuto Noda; Taiki Karahashi; Shin-ichi Orimo

Solid state lithium conductors are attracting much attention for their potential applications to solid-state batteries and supercapacitors of high energy density to overcome safety issues and irreversible capacity loss of the currently commercialized ones. Recently, we discovered a new class of lithium super ionic conductors based on lithium borohydride (LiBH(4)). LiBH(4) was found to have conductivity as high as 10(-2) Scm(-1) accompanied by orthorhombic to hexagonal phase transition above 115 degrees C. Polarization to the lithium metal electrode was shown to be extremely low, providing a versatile anode interface for the battery application. However, the high transition temperature of the superionic phase has limited its applications. Here we show that a chemical modification of LiBH(4) can stabilize the superionic phase even below room temperature. By doping of lithium halides, high conductivity can be obtained at room temperature. Both XRD and NMR confirmed room-temperature stabilization of superionic phase for LiI-doped LiBH(4). The electrochemical measurements showed a great advantage of this material as an extremely lightweight lithium electrolyte for batteries of high energy density. This material will open alternative opportunities for the development of solid ionic conductors other than previously known lithium conductors.


Nature Materials | 2012

An oxyhydride of BaTiO3 exhibiting hydride exchange and electronic conductivity

Yoji Kobayashi; Olivier Hernandez; Tatsunori Sakaguchi; Takeshi Yajima; Thierry Roisnel; Yoshihiro Tsujimoto; Masaki Morita; Yasuto Noda; Yuuki Mogami; Atsushi Kitada; Masatoshi Ohkura; Saburo Hosokawa; Zhaofei Li; Katsuro Hayashi; Yoshihiro Kusano; Jungeun Kim; Naruki Tsuji; Akihiko Fujiwara; Yoshitaka Matsushita; Kazuyoshi Yoshimura; Kiyonori Takegoshi; Masashi Inoue; Mikio Takano; Hiroshi Kageyama

In oxides, the substitution of non-oxide anions (F(-),S(2-),N(3-) and so on) for oxide introduces many properties, but the least commonly encountered substitution is where the hydride anion (H(-)) replaces oxygen to form an oxyhydride. Only a handful of oxyhydrides have been reported, mainly with electropositive main group elements or as layered cobalt oxides with unusually low oxidation states. Here, we present an oxyhydride of the perhaps most well-known perovskite, BaTiO(3), as an O(2-)/H(-) solid solution with hydride concentrations up to 20% of the anion sites. BaTiO(3-x)H(x) is electronically conducting, and stable in air and water at ambient conditions. Furthermore, the hydride species is exchangeable with hydrogen gas at 400 °C. Such an exchange implies diffusion of hydride, and interesting diffusion mechanisms specific to hydrogen may be at play. Moreover, such a labile anion in an oxide framework should be useful in further expanding the mixed-anion chemistry of the solid state.


Journal of the American Chemical Society | 2015

Hydride in BaTiO2.5H0.5: A Labile Ligand in Solid State Chemistry.

Naoya Masuda; Yoji Kobayashi; Olivier Hernandez; Thierry Bataille; Serge Paofai; Hajime Suzuki; C. Ritter; Naoki Ichijo; Yasuto Noda; Kiyonori Takegoshi; Cédric Tassel; Takafumi Yamamoto; Hiroshi Kageyama

In synthesizing mixed anion oxides, direct syntheses have often been employed, usually involving high temperature and occasionally high pressure. Compared with these methods, here we show how the use of a titanium perovskite oxyhydride (BaTiO2.5H0.5) as a starting material enables new multistep low temperature topochemical routes to access mixed anion compounds. Similar to labile ligands in inorganic complexes, the lability of H(-) provides the necessary reactivity for syntheses, leading to reactions and products previously difficult to obtain. For example, BaTiO2.5N0.2 can be prepared with the otherwise inert N2 gas at 400-600 °C, in marked contrast with currently available oxynitride synthetic routes. F(-)/H(-) exchange can also be accomplished at 150 °C, yielding the oxyhydride-fluoride BaTi(O, H, F)3. For BaTiO2.4D0.3F0.3, we find evidence that further anionic exchange with OD(-) yields BaTiO2.4(D(-))0.26(OD(-))0.34, which implies stable coexistence of H(+) and H(-) at ambient conditions. Such an arrangement is thermodynamically unstable and would be difficult to realize otherwise. These results show that the labile nature of hydride imparts reactivity to oxide hosts, enabling it to participate in new multistep reactions and form new materials.


Physical Chemistry Chemical Physics | 2012

Homo- and heteronuclear two-dimensional covariance solid-state NMR spectroscopy with a dual-receiver system

Kazuyuki Takeda; Yasushi Kusakabe; Yasuto Noda; Masashi Fukuchi; K. Takegoshi

Two-dimensional (2D) covariance NMR spectroscopy, which has originally been established to extract homonuclear correlations (HOMCOR), is extended to include heteronuclear correlations (HETCOR). In a (13)C/(15)N 2D chemical shift correlation experiment, (13)C and (15)N signals of a polycrystalline sample of (13)C, (15)N-labeled amino acid are acquired simultaneously using a dual-receiver NMR system. The data sets are rearranged for the covariance data processing, and the (13)C-(15)N heteronuclear correlations are obtained together with the (13)C-(13)C and (15)N-(15)N homonuclear correlations. The present approach retains the favorable feature of the original covariance HOMCOR that the spectral resolution along the indirect dimension is given by that of the detection dimension. As a result, much fewer amounts of data are required to obtain a well-resolved 2D spectrum compared to the case of the conventional 2D Fourier-Transformation (FT) scheme. Hence, one can significantly save the experimental time, or enhance the sensitivity by increasing the number of signal averaging within a given measurement time.


Journal of Magnetic Resonance | 2012

Quantitative cross-polarization at magic-angle spinning frequency of about 20 kHz

Kazuyuki Takeda; Yasuto Noda; K. Takegoshi; Olivier Lafon; Julien Trébosc; Jean-Paul Amoureux

We study the QUantitative Cross-Polarization (QU-CP) method proposed by Hou et al. (Chem. Phys. Lett. 421 (2006) 356) under the moderate MAS speed of 23 kHz, re-examining its two building blocks, namely, the CP polarization transfer from (1)H to (13)C, and the thermal equalization of the (13)C magnetizations. We show that the nuclear-integrated cross-polarization (NI-CP) scheme is conveniently used for (1)H-(13)C polarization transfer, because of its simplicity, robustness to rf-mismatch, and compatibility with fast sample spinning. In the mixing part, in addition to dipolar-assisted rotational-resonance (DARR) recoupling, we examine the Phase-Alternated Recoupling Irradiation Schemes (PARIS and PARIS(xy)), and Second-order Hamiltonian among Analogous Nuclei Generated by Hetero-nuclear Assistance Irradiation (SHANGHAI) sequences, and show that SHANGHAI gives the best performances in equalizing the (13)C magnetizations.


Inorganic Chemistry | 2017

Pressure-Stabilized Cubic Perovskite Oxyhydride BaScO2H

Yoshihiro Goto; Cédric Tassel; Yasuto Noda; Olivier Hernandez; Chris J. Pickard; Mark A. Green; Hikari Sakaebe; Noboru Taguchi; Yoshiharu Uchimoto; Yoji Kobayashi; Hiroshi Kageyama

We report a scandium oxyhydride BaScO2H prepared by solid state reaction under high pressure. Rietveld refinements against powder synchrotron X-ray and neutron diffraction data revealed that BaScO2H adopts the ideal cubic perovskite structure (Pm3̅m), where oxide (O2-) and hydride (H-) anions are disordered. 1H nuclear magnetic resonance (NMR) spectroscopy provides a positive chemical shift of about +4.4 ppm, which can be understood by the distance to the nearest (and possibly the next nearest) cation from the H nucleus. A further analysis of the NMR data and calculations based on ab initio random structure searches suggest a partial cis preference in ScO4H2 octahedra. The present oxyhydride, if compositionally or structurally tuned, may become a candidate for H- conductors.


Journal of Magnetic Resonance | 2012

Elemental analysis by NMR.

Kazuyuki Takeda; Naoki Ichijo; Yasuto Noda; K. Takegoshi

We explore the possibility for elemental analysis by NMR. To keep the efficiency of the signal acquisition common for all spin species, we propose to fix the frequency and vary the magnetic field to cover the isotopes involved in a sample. We introduce constant-frequency receptivity for quantitative elemental analysis in the frequency-fixed NMR experiment. Field-variable NMR experiments are demonstrated using a cryogen-free superconducting magnet. In addition to elemental analysis in liquid solution, solid-state NMR under magic-angle spinning is also described.


Journal of Magnetic Resonance | 2011

Nondestructive high-resolution solid-state NMR of rotating thin films at the magic-angle.

Munehiro Inukai; Yasuto Noda; Kazuyuki Takeda

We present a new approach to nondestructive magic-angle spinning (MAS) nuclear magnetic resonance (NMR) for thin films. In this scheme, the sample put on the top of a rotor is spun using the conventional MAS system, and the NMR signals are detected with an additional coil. Stable spinning of disk-shaped samples with diameters of 7 mm and 12 mm at 14.2 and 7 kHz are feasible. We present 7Li MAS NMR experiments of a thin-film sample of LiCoO2 with a thickness of 200 nm. Taking advantage of the nondestructive feature of the experiment, we also demonstrate ex situ experiments, by tracing conformation change upon annealing for various durations. This approach opens the door for in situ MAS NMR of thin-film devices as well.


Journal of Magnetic Resonance | 2014

COMPOZER-based longitudinal cross-polarization via dipolar coupling under MAS

Takayuki Kamihara; Miwa Murakami; Yasuto Noda; Kazuyuki Takeda; K. Takegoshi

We propose a cross polarization (CP) sequence effective under magic-angle spinning (MAS) which is tolerant to RF field inhomogeneity and Hartmann-Hahn mismatch. Its key feature is that spin locking is not used, as CP occurs among the longitudinal (Z) magnetizations modulated by the combination of two pulses with the opposite phases. We show that, by changing the phases of the pulse pairs synchronized with MAS, the flip-flop term of the dipolar interaction is restored under MAS.


Physical Chemistry Chemical Physics | 2013

A statistical approach for analyzing the development of 1H multiple-quantum coherence in solids

Yuuki Mogami; Yasuto Noda; Hiroto Ishikawa; K. Takegoshi

A novel statistical approach for analyzing (1)H multiple-quantum (MQ) spin dynamics in so-called spin-counting solid-state NMR experiments is presented. The statistical approach is based on the percolation theory with Monte Carlo methods and is examined by applying it to the experimental results of three solid samples having unique hydrogen arrangement for 1-3 dimensions: the n-alkane/d-urea inclusion complex as a one-dimensional (1D) system, whose (1)H nuclei align approximately in 1D, and magnesium hydroxide and adamantane as a two-dimensional (2D) and a three-dimensional (3D) system, respectively. Four lattice models, linear, honeycomb, square and cubic, are used to represent the (1)H arrangement of the three samples. It is shown that the MQ dynamics in adamantane is consistent with that calculated using the cubic lattice and that in Mg(OH)2 with that calculated using the honeycomb and the square lattices. For n-C20H42/d-urea, these 4 lattice models fail to express its result. It is shown that a more realistic model representing the (1)H arrangement of n-C20H42/d-urea can describe the result. The present approach can thus be used to determine (1)H arrangement in solids.

Collaboration


Dive into the Yasuto Noda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge