Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuyo Sano is active.

Publication


Featured researches published by Yasuyo Sano.


Journal of Clinical Investigation | 2010

The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice

Matthew B. Greenblatt; Jae-Hyuck Shim; Weiguo Zou; Despina Sitara; Michelle Schweitzer; Dorothy Hu; Sutada Lotinun; Yasuyo Sano; Roland Baron; Jin Mo Park; Simon Arthur; Min Xie; Michael D. Schneider; Bo Zhai; Steven P. Gygi; Roger J. Davis; Laurie H. Glimcher

Nearly every extracellular ligand that has been found to play a role in regulating bone biology acts, at least in part, through MAPK pathways. Nevertheless, much remains to be learned about the contribution of MAPKs to osteoblast biology in vivo. Here we report that the p38 MAPK pathway is required for normal skeletogenesis in mice, as mice with deletion of any of the MAPK pathway member-encoding genes MAPK kinase 3 (Mkk3), Mkk6, p38a, or p38b displayed profoundly reduced bone mass secondary to defective osteoblast differentiation. Among the MAPK kinase kinase (MAP3K) family, we identified TGF-beta-activated kinase 1 (TAK1; also known as MAP3K7) as the critical activator upstream of p38 in osteoblasts. Osteoblast-specific deletion of Tak1 resulted in clavicular hypoplasia and delayed fontanelle fusion, a phenotype similar to the cleidocranial dysplasia observed in humans haploinsufficient for the transcription factor runt-related transcription factor 2 (Runx2). Mechanistic analysis revealed that the TAK1-MKK3/6-p38 MAPK axis phosphorylated Runx2, promoting its association with the coactivator CREB-binding protein (CBP), which was required to regulate osteoblast genetic programs. These findings reveal an in vivo function for p38beta and establish that MAPK signaling is essential for bone formation in vivo. These results also suggest that selective p38beta agonists may represent attractive therapeutic agents to prevent bone loss associated with osteoporosis and aging.


Nature Immunology | 2008

The kinase p38|[alpha]| serves cell type|[ndash]|specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression

Chun Kim; Yasuyo Sano; Kristina Todorova; Bradley A. Carlson; Luis Arpa; Antonio Celada; Toby Lawrence; Kinya Otsu; Janice L. Brissette; J. Simon C. Arthur; Jin Mo Park

The mitogen-activated protein kinase p38 mediates cellular responses to injurious stress and immune signaling. Among the many p38 isoforms, p38α is the most widely expressed in adult tissues and can be targeted by various pharmacological inhibitors. Here we investigated how p38α activation is linked to cell type–specific outputs in mouse models of cutaneous inflammation. We found that both myeloid and epithelial p38α elicit inflammatory responses, yet p38α signaling in each cell type served distinct inflammatory functions and varied depending on the mode of skin irritation. In addition, myeloid p38α limited acute inflammation via activation of anti-inflammatory gene expression dependent on mitogen- and stress-activated kinases. Our results suggest a dual function for p38α in the regulation of inflammation and show mixed potential for its inhibition as a therapeutic strategy.


Journal of Biological Chemistry | 2008

Selenoproteins Mediate T Cell Immunity through an Antioxidant Mechanism

Rajeev K. Shrimali; Robert Irons; Bradley A. Carlson; Yasuyo Sano; Vadim N. Gladyshev; Jin Mo Park; Dolph L. Hatfield

Selenium is an essential dietary element with antioxidant roles in immune regulation, but there is little understanding of how this element acts at the molecular level in host defense and inflammatory disease. Selenium is incorporated into the amino acid selenocysteine (Sec), which in turn is inserted into selenoproteins in a manner dependent on Sec tRNA[Ser]Sec. To investigate the molecular mechanism that links selenium to T cell immunity, we generated mice with selenoprotein-less T cells by cell type-specific ablation of the Sec tRNA[Ser]Sec gene (trsp). Herein, we show that these mutant mice exhibit decreased pools of mature T cells and a defect in T cell-dependent antibody responses. We also demonstrate that selenoprotein deficiency leads to oxidant hyperproduction in T cells and thereby suppresses T cell proliferation in response to T cell receptor stimulation. These findings offer novel insights into immune function of selenium and physiological antioxidants.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Antiinflammatory cAMP signaling and cell migration genes co-opted by the anthrax bacillus

Clifford Kim; Sarah A. Wilcox-Adelman; Yasuyo Sano; Wei-Jen Tang; R. J. Collier; Junsoo Park

Bacillus anthracis, the etiologic agent of anthrax, avoids immune surveillance and commandeers host macrophages as a vehicle for lymphatic spreading. Here, we show that B. anthracis edema toxin (ET), via its adenylyl cyclase activity, dramatically increases the motility of infected macrophages and the expression of vascular endothelial growth factor. The transcription factor CREB and the syndecan-1 gene, a CREB target, play crucial roles in ET-induced macrophage migration. These molecular and cellular responses occur in macrophages engaged in antiinflammatory G protein-coupled receptor activation, thus illustrating a common signaling circuitry controlling resolution of inflammation and host cell hijacking by B. anthracis.


Journal of Biological Chemistry | 2011

p38 MAPK Activation Is Downstream of the Loss of Intercellular Adhesion in Pemphigus Vulgaris

Xuming Mao; Yasuyo Sano; Jin Mo Park; Aimee S. Payne

Pemphigus vulgaris (PV) is a potentially fatal blistering disease characterized by autoantibodies against the desmosomal adhesion protein desmoglein (Dsg) 3. Whether autoantibody steric hindrance or signaling through pathways such as p38 MAPK is primary in disease pathogenesis is controversial. PV mAbs that cause endocytosis of Dsg3 but do not dissociate keratinocytes because of compensatory adhesion by Dsg1 do not activate p38. The same mAbs plus exfoliative toxin to inactivate Dsg1 but not exfoliative toxin alone activate p38, suggesting that p38 activation is secondary to loss of adhesion. Mice with epidermal p38α deficiency blister after passive transfer of PV mAbs; however, acantholytic cells retain cell surface Dsg3 compared with wild-type mice. In cultured keratinocytes, p38 knockdown prevents loss of desmosomal Dsg3 by PV mAbs, and exogenous p38 activation causes internalization of Dsg3, desmocollin 3, and desmoplakin. p38α MAPK is therefore not required for the loss of intercellular adhesion in PV, but may function downstream to augment blistering via Dsg3 endocytosis. Treatments aimed at increasing keratinocyte adhesion could be used in conjunction with immunosuppressive agents, potentially leading to safer and more effective combination therapy regimens.


Journal of Investigative Dermatology | 2014

MAPKAP kinase 2 (MK2)-dependent and independent models of blister formation in pemphigus vulgaris

Xuming Mao; Hong Li; Yasuyo Sano; Matthias Gaestel; Jin Mo Park; Aimee S. Payne

Pemphigus vulgaris (PV) is an autoimmune blistering disease characterized by autoantibodies to the keratinocyte adhesion protein desmoglein (Dsg) 3. Previous studies suggest that PV pathogenesis involves p38 mitogen activated protein kinase-dependent and -independent pathways. However, p38 is a difficult protein to study and therapeutically target because it has four isoforms and multiple downstream effectors. In the current study, we identify MAPKAP kinase 2 (MK2) as a downstream effector of p38 signaling in PV and describe MK2-dependent and -independent mechanisms of blister formation using passive transfer of human anti-Dsg IgG4 mAbs to neonatal mice. In human keratinocytes, PV mAbs activate MK2 in a dose-dependent manner. MK2 is also activated in human pemphigus skin blisters, causing translocation of MK2 from the nucleus to the cytosol. Small molecule inhibition of MK2 and silencing of MK2 expression block PV mAb-induced Dsg3 endocytosis in human keratinocytes. Additionally, small molecule inhibition and genetic deletion of p38α and MK2 inhibit spontaneous, but not induced, suprabasal blisters by PV mAbs in mouse passive transfer models. Collectively, these data suggest that MK2 is a key downstream effector of p38 that can modulate PV autoantibody pathogenicity. MK2 inhibition may be a valuable adjunctive therapy for control of pemphigus blistering.


Cancer Discovery | 2011

Cell-Selective Inhibition of NF-κB Signaling Improves Therapeutic Index in a Melanoma Chemotherapy Model

Thomas Enzler; Yasuyo Sano; Min-Kyung Choo; Howard B. Cottam; Michael Karin; Hensin Tsao; Jin Mo Park

UNLABELLED The transcription factor NF-κB promotes survival of cancer cells exposed to doxorubicin and other chemotherapeutic agents. IκB kinase is essential for chemotherapy-induced NF-κB activation and considered a prime target for anticancer treatment. An IκB kinase inhibitor sensitized human melanoma xenografts in mice to killing by doxorubicin, yet also exacerbated treatment toxicity in the host animals. Using mouse models that simulate cell-selective targeting, we found that impaired NF-κB activation in melanoma and host myeloid cells accounts for the therapeutic and the adverse effects, respectively. Ablation of tumor-intrinsic NF-κB activity resulted in apoptosis-driven tumor regression following doxorubicin treatment. By contrast, chemotherapy in mice with myeloid-specific loss of NF-κB activation led to a massive intratumoral recruitment of interleukin-1β-producing neutrophils and necrotic tumor lesions, a condition associated with increased host mortality but not accompanied by tumor regression. Therefore, a molecular target-based therapy may be steered toward different clinical outcomes depending on the drugs cell-specific effects. SIGNIFICANCE Our findings show that the IκB kinase–NF-κB signaling pathway is important for both promoting treatment resistance and preventing host toxicity in cancer chemotherapy; however, the two functions are exerted by distinct cell type–specific mechanisms and can therefore be selectively targeted to achieve an improved therapeutic outcome.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Cell type-specific targeting dissociates the therapeutic from the adverse effects of protein kinase inhibition in allergic skin disease

Patcharee Ritprajak; Morisada Hayakawa; Yasuyo Sano; Kinya Otsu; Jin Mo Park

The kinase p38α, originally identified because of its endotoxin- and cytokine-inducible activity and affinity for antiinflammatory compounds, has been posited as a promising therapeutic target for various immune-mediated disorders. In clinical trials, however, p38α inhibitors produced adverse skin reactions and other toxic effects that often outweighed their benefits. Such toxicity may arise from a perturbation of physiological functions unrelated to or even protective against the disease being treated. Here, we show that the effect of interfering with p38α signaling can be therapeutic or adverse depending on the targeted cell type. Using a panel of mutant mice devoid of p38α in distinct cell types and an experimental model of allergic skin disease, we find that dendritic cell (DC)-intrinsic p38α function is crucial for both antigen-specific T-cell priming and T-cell–mediated skin inflammation, two independent processes essential for the immunopathogenesis. By contrast, p38α in other cell types serves to prevent excessive inflammation or maintain naïve T-cell pools in the peripheral lymphoid tissues. These findings highlight a dilemma in the clinical use of p38α inhibitors, yet also suggest cell-selective targeting as a potential solution for improving their therapeutic index.


Journal of Investigative Dermatology | 2014

Loss of Epidermal p38α Signaling Prevents UVR-Induced Inflammation via Acute and Chronic Mechanisms

Yasuyo Sano; Jin Mo Park

Ultraviolet B radiation (UVB) is a component of solar radiation primarily responsible for causing damage and cancer in irradiated skin, and disrupting immune homeostasis. The immediate harm and long-term health risks of excessive sunlight exposure are impacting the lives of nearly all people worldwide. Inflammation is a key mechanism underlying UVB’s various detrimental effects. Here we show that activation of the protein kinase p38α is restricted to the epidermis in UVB-exposed skin, and p38α ablation targeted to the epithelial compartment is sufficient to suppress UVB-induced inflammation. Mechanistically, loss of epithelial p38α signaling attenuates the expression of genes required to induce vascular leakage and edema, and also increases the steady-state abundance of epidermal γδ T cells, which are known to promote the repair of damaged epidermis. These effects of p38α deficiency delineate a molecular network operating at the organism-environment interface, and reveal conditions crucial to preventing the pathology resulting from sun-damaged skin.


Journal of Biological Chemistry | 2015

p38α MAPK Is Required for Tooth Morphogenesis and Enamel Secretion

Matthew B. Greenblatt; Jung-Min Kim; Hwanhee Oh; Kwang Hwan Park; Min-Kyung Choo; Yasuyo Sano; Coralee E. Tye; Ziedonis Skobe; Roger J. Davis; Jin Mo Park; Marianna Bei; Laurie H. Glimcher; Jae-Hyuck Shim

Background: Little is known regarding the contribution of MAPKs to the development of ectodermal appendages. Results: Mice with a deletion of p38α in ectoderm display defective secretion of dental enamel and the absence of dental cusps. Conclusion: p38α mediates critical steps in tooth morphogenesis and enamel secretion. Significance: This is the first in vivo study demonstrating that the p38 MAPK pathway is critical for tooth morphogenesis and enamel secretion. An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678–27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38αK14 mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and β4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel.

Collaboration


Dive into the Yasuyo Sano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley A. Carlson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aimee S. Payne

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge