Yasuyoshi Mizutani
Fujita Health University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yasuyoshi Mizutani.
Acta Histochemica Et Cytochemica | 2016
Kazuya Shiogama; Takanori Onouchi; Yasuyoshi Mizutani; Kouhei Sakurai; Ken-ichi Inada; Yutaka Tsutsumi
Neutrophil extracellular traps (NETs) are extracellular fibrillary structures composed of degraded chromatin and granules of neutrophil origin. In fibrinopurulent inflammation such as pneumonia and abscess, deposition of fibrillar eosinophilic material is a common histopathological finding under hematoxylin-eosin staining. Expectedly, not only fibrin fibrils but also NETs consist of the fibrillar material. The aim of the present study is to analyze immunohistochemically how NETs are involved in the inflammatory process. Archival formalin-fixed, paraffin-embedded sections accompanying marked neutrophilic infiltration were the target of analysis. Neutrophil-associated substances (citrullinated histone H3, lactoferrin, myeloperoxidase and neutrophil elastase) were evaluated as NETs markers, while fibrinogen gamma chain was employed as a fibrin marker. Light microscopically, the fibrils were categorized into three types: thin, thick and clustered thick. Lactoferrin represented a good and stable NETs marker. Thin fibrils belonged to NETs. Thick fibrils are composed of either mixed NETs and fibrin or fibrin alone. Clustered thick fibrils were solely composed of fibrin. Neutrophils were entrapped within the fibrilllar meshwork of the thin and thick types. Apoptotic cells immunoreactive to cleaved caspase 3 and cleaved actin were dispersed in the NETs. In conclusion, NETs and fibrin meshwork were consistently recognizable by immunostaining for lactoferrin and fibrinogen gamma chain.
Journal of Immunological Methods | 2013
Yasuyoshi Mizutani; Kazuhiro Matsuoka; Hiroyuki Takeda; Kazuya Shiogama; Ken-ichi Inada; Kazue Hayakawa; Harumoto Yamada; Tatsuhiko Miyazaki; Tatsuya Sawasaki; Yaeta Endo; Yutaka Tsutsumi
Synovial tissue in rheumatoid arthritis (RA) shows dense infiltration of plasmacytes. The purpose of the present study is to identify and localize autoantibodies produced in these immunocytes in RA synovitis. We developed a novel screening system for detecting specific autoantigens. Protein antigens recognized by antibodies in the serum and synovial tissue extract from five RA patients were screened with the AlphaScreen method. For screening, a biotinylated human autoantigen library was constructed by the wheat germ cell-free protein synthesis system. The AlphaScreen analysis of 2183 proteins detected a limited number of antigens reactive with the serum and synovial tissue extract. Eighteen biotinylated proteins, containing top five showing high signals in each synovitis tissue extract, were utilized as probes for the enzyme-labeled antigen method, in order to visualize the site of specific antibody production in synovial lesions. Specific antibodies against two proteins, tripartite motif-containing 21 (TRIM21, also known as SSA/Ro52) and F-box only protein 2 (FBXO2), were visualized in the cytoplasm of plasmacytes in two RA synovitis lesions, respectively. Absorption experiments using unlabeled proteins confirmed the specificity of staining. No positive signals against these two proteins were identified in the additionally evaluated RA and osteoarthritis synovial lesions. The present study indicated 1) the usefulness of screening the human autoantigen library with the AlphaScreen assay for detecting autoantibodies in RA synovitis, and 2) the applicability of biotinylated proteins to the enzyme-labeled antigen method for visualizing the site of autoantibody production within the lesion.
Clinical Microbiology and Infection | 2012
K. Tamakuma; Yasuyoshi Mizutani; M. Ito; Kazuya Shiogama; Ken-ichi Inada; K. Miyamoto; H. Utsunomiya; F. Mahara; Yutaka Tsutsumi
Japanese spotted fever (JSF) is caused by Rickettsia japonica, and lethal cases are reported yearly in southwest Japan. We thus established the method of diagnosing JSF by immunohistochemistry (IHC) and real-time PCR (RT-PCR) using formalin-fixed, paraffin-embedded skin biopsy specimens. Two monoclonal antibodies were used for IHC, and the 17k genus common antigen gene served as the target of RT-PCR. We collected skin biopsy (n = 61) and autopsy (n = 1) specimens from 50 patients clinically suspected of JSF. Immunohistochemically, the rickettsial antigens were localized as coarse dots in the cytoplasm of endothelial cells and macrophages. Thirty-one seropositive cases plus one autopsy case (group A) and nine seronegative cases but with positive IHC and/or RT-PCR (group B) were judged as JSF. Nine cases were regarded as non-JSF disorders based on negative serology, IHC and RT-PCR (group C). Of 50 biopsies (eschar 34, eruptions 10, and scabs 6) from groups A and B, IHC and RT-PCR positivities were 94% (32/34) and 62% (21/34) for eschar, 80% (8/10) and 30% (3/10) for eruptions, and 33% (2/6) and 50% (3/6) for scabs. For IHC, eschar was most suitable, and scabs were insufficient. Unexpectedly, 18 biopsies happened to be fixed in 100% formalin, and this lowered the detection rate by RT-PCR, but IHC was tolerant. Sequence analysis using five skin biopsy specimens confirmed a 114 bp DNA stretch homologous to that reported for the target gene of R. japonica. In 26 (84%) of the 31 seropositive patients, the diagnosis was made by IHC and/or RT-PCR earlier than serology.
Clinical Microbiology and Infection | 2012
K. Tamakuma; Yasuyoshi Mizutani; M. Ito; Kazuya Shiogama; Ken-ichi Inada; K. Miyamoto; H. Utsunomiya; F. Mahara; Yutaka Tsutsumi
Japanese spotted fever (JSF) is caused by Rickettsia japonica, and lethal cases are reported yearly in southwest Japan. We thus established the method of diagnosing JSF by immunohistochemistry (IHC) and real-time PCR (RT-PCR) using formalin-fixed, paraffin-embedded skin biopsy specimens. Two monoclonal antibodies were used for IHC, and the 17k genus common antigen gene served as the target of RT-PCR. We collected skin biopsy (n = 61) and autopsy (n = 1) specimens from 50 patients clinically suspected of JSF. Immunohistochemically, the rickettsial antigens were localized as coarse dots in the cytoplasm of endothelial cells and macrophages. Thirty-one seropositive cases plus one autopsy case (group A) and nine seronegative cases but with positive IHC and/or RT-PCR (group B) were judged as JSF. Nine cases were regarded as non-JSF disorders based on negative serology, IHC and RT-PCR (group C). Of 50 biopsies (eschar 34, eruptions 10, and scabs 6) from groups A and B, IHC and RT-PCR positivities were 94% (32/34) and 62% (21/34) for eschar, 80% (8/10) and 30% (3/10) for eruptions, and 33% (2/6) and 50% (3/6) for scabs. For IHC, eschar was most suitable, and scabs were insufficient. Unexpectedly, 18 biopsies happened to be fixed in 100% formalin, and this lowered the detection rate by RT-PCR, but IHC was tolerant. Sequence analysis using five skin biopsy specimens confirmed a 114 bp DNA stretch homologous to that reported for the target gene of R. japonica. In 26 (84%) of the 31 seropositive patients, the diagnosis was made by IHC and/or RT-PCR earlier than serology.
Journal of Histochemistry and Cytochemistry | 2011
Shinya Tsuge; Yasuyoshi Mizutani; Kazuhiro Matsuoka; Tatsuya Sawasaki; Yaeta Endo; Koji Naruishi; Hiroshi Maeda; Shogo Takashiba; Kazuya Shiogama; Ken-ichi Inada; Yutaka Tsutsumi
The enzyme-labeled antigen method was applied to visualize plasma cells producing antibodies to Porphyromonas gingivalis, flora of the human oral cavity. Antibodies to P. gingivalis have reportedly been detected in sera of patients with periodontitis. Biotinylated bacterial antigens, Ag53, and four gingipain domains (Arg-pro, Arg-hgp, Lys-pro, and Lys-hgp) were prepared by the cell-free protein synthesis system using the wheat germ extract. In paraformaldehyde-fixed frozen sections of rat lymph nodes experimentally immunized with Ag53-positive and Ag53-negative P. gingivalis, plasma cells were labeled with biotinylated Arg-hgp and Lys-hgp. Antibodies to Ag53 were detected only in the nodes immunized with Ag53-positive bacteria. In two of eight lesions of gingival radicular cyst with inflammatory infiltration, CD138-positive plasma cells in frozen sections were signalized for Arg-hgp and Lys-hgp. An absorption study using unlabeled antigens confirmed the specificity of staining. The AlphaScreen method identified the same-type antibodies in tissue extracts but not in sera. Antibodies to Ag53, Arg-pro, and Lys-pro were undetectable. In two cases, serum antibodies to Arg-hgp and Lys-hgp were AlphaScreen positive, whereas plasma cells were scarcely observed within the lesions. These findings indicate the validity of the enzyme-labeled antigen method. This is the very first application of this novel histochemical technique to human clinical samples.
Acta Histochemica Et Cytochemica | 2016
Takanori Onouchi; Kazuya Shiogama; Takahiro Matsui; Yasuyoshi Mizutani; Kouhei Sakurai; Ken-ichi Inada; Yutaka Tsutsumi
Neutrophil extracellular traps (NETs) represent an extracellular, spider’s web-like structure resulting from cell death of neutrophils. NETs play an important role in innate immunity against microbial infection, but their roles in human pathological processes remain largely unknown. NETs and fibrin meshwork both showing fibrillar structures are observed at the site of fibrinopurulent inflammation, as described in our sister paper [Acta Histochem. Cytochem. 49; 109–116, 2016]. In the present study, immunoelectron microscopic study was performed for visualizing NETs and fibrin fibrils (thick fibrils in our tongue) in formalin-fixed, paraffin-embedded sections of autopsied lung tissue of legionnaire’s pneumonia. Lactoferrin and fibrinogen gamma chain were utilized as markers of NETs and fibrin, respectively. Analysis of immuno-scanning electron microscopy indicated that NETs constructed thin fibrils and granular materials were attached onto the NETs fibrils. The smooth-surfaced fibrin fibrils were much thicker than the NETs fibrils. Pre-embedding immunoelectron microscopy demonstrated that lactoferrin immunoreactivities were visible as dots on the fibrils, whereas fibrinogen gamma chain immunoreactivities were homogeneously observed throughout the fibrils. Usefulness of immunoelectron microscopic analysis of NETs and fibrin fibrils should be emphasized.
Journal of Histochemistry and Cytochemistry | 2009
Yasuyoshi Mizutani; Shinya Tsuge; Kazuya Shiogama; Ryoichi Shimomura; Shingo Kamoshida; Ken-ichi Inada; Yutaka Tsutsumi
The enzyme-labeled antigen method is a histochemical technique that visualizes antigen-specific antibody-producing cells in tissue sections, originally documented in 1968. In this study, we attempted to reemerge this hidden but potentially useful method in rat models immunized with horseradish peroxidase (HRP), ovalbumin (OA), or keyhole limpet hemocyanin (KLH). After repeated immunization in footpads, popliteal, groin, and axillary lymph nodes and spleen were sampled. Paraformaldehyde-prefixed frozen sections were incubated with HRP, biotinylated OA, or biotinylated KLH. Proteinase K pretreatment and the secondary use of HPR-labeled streptavidin were applied in the latter two situations. Plasma cells producing antigen-specific antibodies were visualized. Proportions of antigen-specific antibody-producing cells in total plasma cells shown with the immunoperoxidase method for rat immunoglobulins were evaluated. The percentage of antigen-specific plasma cells reached ∼50% of total plasma cells in the regional lymph nodes. The specificity was confirmed by (a) negativity in non-immune rat tissue, (b) negativity with indifferent antigen probes, and (c) abolishment of the reactivity with the corresponding rat serum. In buffered formalin-fixed, paraffin-embedded tissues, fewer plasma cells were labeled for HRP and KLH antibody reactivity after strong proteolysis and prolonged incubation. Expectedly, this method allows us to observe antigen-specific antibody-producing cells under varied pathological conditions.
Journal of Medical Virology | 2010
Kazuya Shiogama; Hidemi Teramoto; Yukiko Morita; Yasuyoshi Mizutani; Ryoichi Shimomura; Ken-ichi Inada; Toshio Kamahora; Masanao Makino; Yutaka Tsutsumi
Oku‐Komyo‐En is one of the national leprosy sanatoria, located on a small island in Setouchi city, Okayama prefecture of Japan since 1938. Since autopsies were carried out routinely on almost all patients who had died in the sanatorium up to 1980, approximately 1,000 formalin‐fixed autopsy tissue samples were available for analysis. When these samples were reviewed, the pathological data indicated a sharp rise in the death rate caused by cirrhosis of the liver and hepatocellular carcinoma (HCC) since 1960 and 1970, respectively. Hepatitis C virus (HCV) infection is a common cause of HCC in Japan. The presence of HCV RNA was demonstrated in paraffin sections prepared from the autopsied liver tissue fixed in formalin for a prolonged period of time, by employing nested RT‐PCR using type‐specific primers. The data showed that HCV RNA was detectable in samples of the liver archived as early as 1940, representing the liver tissues kept in formalin for up to 67 years. HCV genotypes 1b and 2a were found by RT‐PCR at 85.7% and 14.3%, respectively, in patients with leprosy. J. Med. Virol. 82:556–561, 2010.
Molecular Oral Microbiology | 2014
Yasuyoshi Mizutani; Shinya Tsuge; Hiroyuki Takeda; Y. Hasegawa; Kazuya Shiogama; Takanori Onouchi; Ken-ichi Inada; Tatsuya Sawasaki; Yutaka Tsutsumi
Porphyromonas gingivalis is a keystone periodontal pathogen. Histologocally, the gingival tissue in periodontitis shows dense infiltration of plasma cells. However, antigens recognized by antibodies secreted from the immunocytes remain unknown. The enzyme-labeled antigen method was applied to detecting plasma cells producing P. gingivalis-specific antibodies in biopsied gingival tissue of periodontitis. N-terminally biotinylated P. gingivalis antigens, Ag53 and four gingipain domains (Arg-pro, Arg-hgp, Lys-pro and Lys-hgp) were prepared by the cell-free protein synthesis system using wheatgerm extract. With these five labeled proteins as probes, 20 lesions of periodontitis were evaluated. With the AlphaScreen method, antibodies against any one of the five P. gingivalis antigens were detected in 11 (55%) serum samples and 17 (85%) tissue extracts. Using the enzyme-labeled antigen method on paraformaldehyde-fixed frozen sections of gingival tissue, plasma cells were labeled with any one of the five antigens in 17 (94%) of 18 specimens, in which evaluable plasma cells were detected. The positivity rates in periodontitis were significantly higher than those found previously in radicular cysts (20% in sera and 33% in tissue extracts with the AlphaScreen method, and 25% with the enzyme-labeled antigen method). Our findings directly indicate that antibodies reactive to P. gingivalis are locally produced in the gingival lesions, and that inflammatory reactions against P. gingivalis are involved in periodontitis.
Microbiology and Immunology | 2015
Takanori Onouchi; Yasuyoshi Mizutani; Kazuya Shiogama; Ken-ichi Inada; Tatsuyoshi Okada; Kensei Naito; Yutaka Tsutsumi
Streptococcus pyogenes is the main causative pathogen of recurrent tonsillitis. Histologically, lesions of recurrent tonsillitis contain numerous plasma cells. Strep A is an antigenic carbohydrate molecule on the cell wall of S. pyogenes. As expected, plasma cells in subjects with recurrent tonsillitis secrete antibodies against Strep A. The enzyme‐labeled antigen method is a novel histochemical technique that visualizes specific antibody‐producing cells in tissue sections by employing a biotin‐labeled antigen as a probe. The purpose of the present study was to visualize plasma cells producing antibodies reactive with Strep A in recurrent tonsillitis. Firstly, the lymph nodes of rats immunized with boiled S. pyogenes were paraformaldehyde‐fixed and specific plasma cells localized in frozen sections with biotinylated Strep A. Secondly, an enzyme‐labeled antigen method was used on human tonsil surgically removed from 12 patients with recurrent tonsillitis. S. pyogenes genomes were PCR‐detected in all 12 specimens. The emm genotypes belonged to emm12 in nine specimens and emm1 in three. Plasma cells producing anti‐Strep A antibodies were demonstrated in prefixed frozen sections of rat lymph nodes, 8/12 human specimens from patients with recurrent tonsillitis but not in two control tonsils. In human tonsils, Strep A‐reactive plasma cells were observed within the reticular squamous mucosa and just below the mucosa, and the specific antibodies belonged to either IgA or IgG classes. Our technique is effective in visualizing immunocytes producing specific antibodies against the bacterial carbohydrate antigen, and is thus a novel histochemical tool for analyzing immune reactions in infectious disorders.