Yatao Liu
Worcester Polytechnic Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yatao Liu.
Biomaterials | 2008
Yatao Liu; Joshua Strauss; Terri A. Camesano
Self-assembled monolayers (SAMs) are being developed into coatings to reduce microbial biofilm formation on biomaterials. To test anti-adhesion properties, SAMs can be easily constructed on gold, and used to represent a coated biomaterial. However, coatings that prevent bacterial adhesion must also resist protein adsorption. We explored the competitive effects of bacteria and protein for adsorption to SAMs, choosing fetal bovine serum (FBS) to represent protein non-specific binding, and fibronectin (FN) to evaluate ligand/receptor binding. Staphylococcus epidermidis were immobilized on an atomic force microscope (AFM) tip and used as a force probe to detect the interaction forces between bacteria and gold-coated SAMs. The SAMs tested were alkanethiol molecules terminating in isophthalic acid (IPA) or isophthalic acid with silver (IAG). While S. epidermidis showed weak interactions with FBS, the bacteria showed strong adhesion with FN, due to ligand/receptor binding. Bacterial retention and viability experiments were correlated with the force measurements. S. epidermidis interacting with IAG SAMs showed a loss of viability, due to the mobility of silver ions. For most substrata, there was a link between high adhesion forces with bacteria and a high percentage of dead cells being retained on that substratum (even in the absence of a specific biocidal effect, such as silver). This may suggest that high adhesion forces can cause stress to the bacteria which contributed to their death. The relationship between highly adhesive SAMs and bacterial inactivation may be useful in future biomaterial design. When evaluating coatings for biomaterials, it is important to consider the interplay between bacteria, proteins, and the coating material.
Colloids and Surfaces B: Biointerfaces | 2008
Yatao Liu; Amparo M. Gallardo-Moreno; Paola A. Pinzón-Arango; Yorke Reynolds; Guadalupe Rodriguez; Terri A. Camesano
Cranberries have been suggested to decrease the attachment of bacteria to uroepithelial cells (UC), thus preventing urinary tract infections, although the mechanisms are not well understood. A thermodynamic approach was used to calculate the Gibbs free energy of adhesion changes (DeltaG(adh)) for bacteria-UC interactions, based on measuring contact angles with three probe liquids. Interfacial tensions and DeltaG(adh) values were calculated for Escherichia coli HB101pDC1 (P-fimbriated) and HB101 (non-fimbriated) exposed to cranberry juice (0-27 wt.%). HB101pDC1 can form strong bonds with the Gal-Gal disaccharide receptor on uroepithelial cells, while HB101-UC interactions are only non-specific. For HB101 interacting with UC, DeltaG(adh) was always negative, suggesting favorable adhesion, and the values were insensitive to cranberry juice concentration. For the HB101pDC1-UC system, DeltaG(adh) became positive at 27wt.% cranberry juice, suggesting that adhesion was unfavorable. Acid-base (AB) interactions dominated the interfacial tensions, compared to Lifshitz-van der Waals (LW) interactions. Exposure to cranberry juice increased the AB component of the interfacial tension of HB101pDC1. LW interactions were small and insensitive to cranberry juice concentration. The number of bacteria attached to UC was quantified in batch adhesion assays and quantitatively correlated with DeltaG(adh). Since the thermodynamic approach should not agree with the experimental results when specific interactions are present, such as HB101pDC-UC ligand-receptor bonds, our results may suggest that cranberry juice disrupts bacterial ligand-UC receptor binding. These results help form the mechanistic explanation of how cranberry products can be used to prevent bacterial attachment to host tissue, and may lead to the development of better therapies based on natural products.
Journal of Medicinal Food | 2009
Paola A. Pinzón-Arango; Yatao Liu; Terri A. Camesano
Previous clinical research has suggested that the consumption of cranberry products prevents the adhesion of Escherichia coli to uroepithelial cells by causing changes in bacterial fimbriae. Atomic force microscopy was used to probe the adhesion forces between E. coli (nonfimbriated strain HB101 and the P-fimbriated variant HB101pDC1) and a model surface (silicon nitride), to determine the effect of growth in cranberry products on bacterial adhesion. Bacteria were grown in tryptic soy broth supplemented with either light cranberry juice cocktail (L-CJC) or cranberry proanthocyanidins (PACs). Growth of E. coli HB101pDC1 and HB101 in L-CJC or PACs resulted in a decrease in adhesion forces with increasing number of cultures. In a macroscale bacteria-uroepithelial cell adhesion assay a decrease in bacterial attachment was observed for E. coli HB101pDC1 grown in L-CJC or PACs. This effect was reversible because bacteria that were regrown in cranberry-free medium regained their ability to attach to uroepithelial cells, and their adhesion forces reverted to the values observed in the control condition. Exposure to increasing concentrations of L-CJC resulted in a decrease of bacterial attachment to uroepithelial cells for the P-fimbriated strain after L-CJC treatment (27% by weight) and after PACs treatment (345.8 microg/mL). Cranberry products affect the surface properties, such as fimbriae and lipopolysaccharides, and adhesion of fimbriated and nonfimbriated E. coli. The concentration of cranberry products and the number of cultures the bacteria were exposed to cranberry determines how much the adhesion forces and attachment are altered.
Colloids and Surfaces B: Biointerfaces | 2008
Arzu Atabek; Yatao Liu; Paola A. Pinzón-Arango; Terri A. Camesano
Atomic force microscopy (AFM) was used to quantify the adhesion forces between Pseudomonas aeruginosa PAO1 and AK1401, and a representative model protein, bovine serum albumin (BSA). The two bacteria strains differ in terms of the structure of their lipopolysaccharide (LPS) layers. While PAO1 is the wild-type expressing a complete LPS and two types of saccharide units in the O-antigen (A(+) B(+)), the mutant AK1401 expresses only a single unit of the A-band saccharide (A(+) B(-)). The mean adhesion force (F(adh)) between BSA and AK1401 was 1.12 nN, compared to 0.40 nN for F(adh) between BSA and PAO1. In order to better understand the fundamental forces that would control bacterial-protein interactions at equilibrium conditions, we calculated interfacial free energies using the van Oss-Chaudhury-Good (VCG) thermodynamic modeling approach. The hydrogen bond strength was also calculated using a Poisson statistical analysis. AK1401 has a higher ability to participate in hydrogen bonding with BSA than does PAO1, which may be because the short A-band and absence of B-band polymer allowed the core oligosaccharides and lipid A regions to be more exposed and to participate in hydrogen and chemical bonding. Interactions between PAO1 and BSA were weak due to the dominance of neutral and hydrophilic sugars of the A-band polymer. These results show that bacterial interactions with protein-coated surfaces will depend on the types of bonds that can form between bacterial surface macromolecules and the protein. We suggest that strategies to prevent bacterial colonization of biomaterials can focus on inhibiting these bonds.
northeast bioengineering conference | 2009
Paola A. Pinzón-Arango; Yatao Liu; Terri A. Camesano
The adhesion of bacteria to uroepithelial cells or urinary catheters is the first step in the development of biofilm formation and urinary tract infections (UTIs). Previous research has suggested that consumption of cranberry juice can prevent the recurrence of UTIs by decreasing bacterial adhesion to epithelial cells. However, the mechanisms of action are not well understood. Experiments were conducted at different scales to test bacterial attachment, adhesion forces and formation of biofilms after continuous exposure of bacteria to cranberry products. At the macroscale, bacteria were incubated with uroepithelial cells and the number of bacteria attached per uroepithelial cell was determined. At the nanoscale, we used atomic force microscopy (AFM) to determine the adhesion forces between E. coli and a silicon nitride AFM tip after bacterial growth in L-CJC or PACs for different numbers of culture times. Successive replacement of media and continued culture in L-CJC and PACs resulted in a significant decrease in adhesion forces for E. coli, which was correlated with a decrease in attached bacteria to uroepithelial cells during cranberry treatment. Growth of bacteria in L-CJC or PACs also inhibited the development of biofilms on polyvinyl-chloride, which can represent biofilm formation on urinary catheters.
Biotechnology and Bioengineering | 2006
Yatao Liu; Matthew A. Black; Lizabeth Caron; Terri A. Camesano
Advances in Water Resources | 2007
Terri A. Camesano; Yatao Liu; Meera Datta
Environmental Science & Technology | 2007
Laila I. Abu-Lail; Yatao Liu; Arzu Atabek; Terri A. Camesano
Langmuir | 2007
Yatao Liu; Joshua Strauss; Terri A. Camesano
JOM | 2009
Joshua Strauss; Yatao Liu; Terri A. Camesano