Yau Sang Chan
The Chinese University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yau Sang Chan.
Cancer Prevention Research | 2012
Evandro Fei Fang; Chris Zhiyi Zhang; Tzi Bun Ng; Jack Ho Wong; Wen Liang Pan; Xiu Juan Ye; Yau Sang Chan; Wing-Ping Fong
The incidence of nasopharyngeal carcinoma (NPC) remains high in endemic regions, including southern China, northern Africa, and North America. One of the promising therapeutic approaches on NPC is drug screening from natural products, such as components from traditional Chinese medicine. In this study, the antitumor activity of Momordica charantia lectin (MCL), a type II ribosome inactivating protein from bitter gourd, on NPC was investigated. MCL evinced potent cytotoxicity toward NPC CNE-1 (IC50 = 6.9) and CNE-2 (IC50 = 7.4) cells but minimally affected normal NP 69 cells. Further investigation disclosed that MCL induced apoptosis, DNA fragmentation, G1-phase arrest, and mitochondrial injury in both types of NPC cells. The reduction of cyclin D1 and phosphoretinoblastoma (Rb) protein expression contributed to arrest at G1-phase of the cell cycle. These events were associated with regulation of mitogen-activated protein kinases (MAPK; including p38 MAPK, JNK, and ERK) phosphorylation and promoted downstream nitric oxide (NO) production. Concurrent administration of the p38 MAPK inhibitor SB-203580 significantly diminished NO production and lethality of MCL toward NPC cells. Further studies revealed that MCL increased cytochrome c release into the cytosol, activated caspases-8, -9, and -3, and enhanced production of cleaved PARP, subsequently leading to DNA fragmentation and apoptosis. Finally, an intraperitoneal injection of MCL (1.0 mg/kg/d) led to an average of 45% remission of NPC xenograft tumors subcutaneously inoculated in nude mice. This is the first article that unveils the potential of a type II RIP, MCL, for prevention and therapy of NPC. Cancer Prev Res; 5(1); 109–21. ©2011 AACR.
PLOS ONE | 2012
Yau Sang Chan; Jack Ho Wong; Evandro Fei Fang; Wen Liang Pan; Tzi Bun Ng
A dimeric 64-kDa glucosamine-specific lectin was purified from seeds of Phaseolus vulgaris cv. “brown kidney bean.” The simple 2-step purification protocol involved affinity chromatography on Affi-gel blue gel and gel filtration by FPLC on Superdex 75. The lectin was absorbed on Affi-gel blue gel and desorbed using 1M NaCl in the starting buffer. Gel filtration on Superdex 75 yielded a major absorbance peak that gave a single 32-kDa band in SDS-PAGE. Hemagglutinating activity was completely preserved when the ambient temperature was in the range of 20°C–60°C. However, drastic reduction of the activity occurred at temperatures above 65°C. Full hemagglutinating activity of the lectin was observed at an ambient pH of 3 to 12. About 50% activity remained at pH 0–2, and only residual activity was observed at pH 13–14. Hemagglutinating activity of the lectin was inhibited by glucosamine. The brown kidney bean lectin elicited maximum mitogenic activity toward murine splenocytes at 2.5 µM. The mitogenic activity was nearly completely eliminated in the presence of 250 mM glucosamine. The lectin also increased mRNA expression of the cytokines IL-2, TNF-α and IFN-γ. The lectin exhibited antiproliferative activity toward human breast cancer (MCF7) cells, hepatoma (HepG2) cells and nasopharyngeal carcinoma (CNE1 and CNE2) cells with IC50 of 5.12 µM, 32.85 µM, 3.12 µM and 40.12 µM respectively after treatment for 24 hours. Flow cytometry with Annexin V and propidum iodide staining indicated apoptosis of MCF7 cells. Hoechst 33342 staining also indicated formation of apoptotic bodies in MCF7 cells after exposure to brown kidney bean lectin. Western blotting revealed that the lectin-induced apoptosis involved ER stress and unfolded protein response.
Archives of Toxicology | 2011
Evandro Fei Fang; Wen Liang Pan; Jack Ho Wong; Yau Sang Chan; Xiu Juan Ye; Tzi Bun Ng
We describe here the purification and characterization of a new Phaseolus vulgaris lectin that exhibits selective toxicity to human hepatoma Hep G2 cells and lacks significant toxicity on normal liver WRL 68 cells. This polygalacturonic acid–specific lectin (termed BTKL) was purified from seeds of P. vulgaris cv. Blue tiger king by liquid chromatography techniques. The 60-kDa dimeric lectin showed strong and broad-spectrum hemagglutinating activity toward human, rabbit, rat, and mouse erythrocytes. Bioinformatic analysis unveils substantial N-terminal sequence similarity of BTKL to other Phaseolus lectins. Among a number of tumor cells tested, BTKL exhibits potent anti-Hep G2 activity which is associated with (1) induction of DNA fragmentation, (2) production of apoptotic bodies and chromatin condensation, (3) triggering of cell apoptosis and necrosis, and (4) depolarization of mitochondrial membrane (low ΔΨm). Furthermore, BTKL could induce inducible nitric oxide synthase (iNOS) expression and subsequent nitric oxide production in vitro in mouse macrophages, which may contribute to its antitumor activity. In addition, BTKL could bring about a significant dose-dependent increase in the production of mRNAs of proinflammatory cytokines including interleukin-1 beta, interleukin-2, tumor necrosis factor alpha, and interferon-gamma. In sum, the antitumor activity and mechanism of BTKL provided here suggest that it has potential therapeutic value for human liver cancer.
PLOS ONE | 2012
Evandro Fei Fang; Chris Zhiyi Zhang; Lin Zhang; Jack Ho Wong; Yau Sang Chan; Wen Liang Pan; Xiu Li Dan; Cui Ming Yin; Chi Hin Cho; Tzi Bun Ng
Breast cancer ranks as a common and severe neoplasia in women with increasing incidence as well as high risk of metastasis and relapse. Translational and laboratory-based clinical investigations of new/novel drugs are in progress. Medicinal plants are rich sources of biologically active natural products for drug development. The 27-kDa trichosanthin (TCS) is a ribosome inactivating protein purified from tubers of the Chinese herbal plant Trichosanthes kirilowii Maximowicz (common name Tian Hua Fen). In this study, we extended the potential medicinal applications of TCS from HIV, ferticide, hydatidiform moles, invasive moles, to breast cancer. We found that TCS manifested anti-proliferative and apoptosis-inducing activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cells. Flow cytometric analysis disclosed that TCS induced cell cycle arrest. Further studies revealed that TCS-induced tumor cell apoptosis was attributed to activation of both caspase-8 and caspase-9 regulated pathways. The subsequent events including caspase-3 activation, and increased PARP cleavage. With regard to cell morphology, stereotypical apoptotic features were observed. Moreover, in comparison with control, TCS- treated nude mice bearing MDA-MB-231 xenograft tumors exhibited significantly reduced tumor volume and tumor weight, due to the potent effect of TCS on tumor cell apoptosis as determined by the increase of caspase-3 activation, PARP cleavage, and DNA fragmentation using immunohistochemistry. Considering the clinical efficacy and relative safety of TCS on other human diseases, this work opens up new therapeutic avenues for patients with estrogen-dependent and/or estrogen-independent breast cancers.
Applied Microbiology and Biotechnology | 2011
Tzi Bun Ng; Xiu Juan Ye; Jack Ho Wong; Evandro Fei Fang; Yau Sang Chan; Wen Liang Pan; Xiu Yun Ye; Stephen Cho Wing Sze; Kalin Yanbo Zhang; Fang Liu; He Xiang Wang
This review covers the biosynthesis of glyceollin and its biological activities including antiproliferative/antitumor action (toward B16 melanoma cells, LNCaP prostate cancer cells, and BG-1 ovarian cancer cells), anti-estrogenic action (through estrogen receptors α- and β-), antibacterial action (toward Erwinia carotovora, Escherichia coli, Bradyrhizobium japonicum, Sinorhizobium fredii ), antinematode activity, and antifungal activity (toward Fusarium solani, Phakospora pachyrhizi, Diaporthe phaseolorum, Macrophomina phaseolina, Sclerotina sclerotiorum, Phytophthora sojae, Cercospora sojina, Phialophora gregata, and Rhizoctonia solani). Other activities include insulinotropic action and attenuation of vascular contractions in rat aorta.
Applied Microbiology and Biotechnology | 2014
Randy Chi Fai Cheung; Jack Ho Wong; Wen Liang Pan; Yau Sang Chan; Cui Ming Yin; Xiu Li Dan; He Xiang Wang; Evandro Fei Fang; S. K. Lam; Patrick H.K. Ngai; Li Xin Xia; Fang Liu; Xiu Yun Ye; Guo Qing Zhang; Qing Hong Liu; Ou Sha; Peng Lin; Chan Ki; Adnan A. Bekhit; Alaa El-Din A. Bekhit; David Chi Cheong Wan; Xiu Juan Ye; Jiang Xia; Tzi Bun Ng
Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.
PLOS ONE | 2013
Yau Sang Chan; Tzi Bun Ng
A 70-kDa galactose-specific lectin was purified from the tubers of Dioscorea opposita cv. nagaimo. The purification involved three chromatographic steps: anion exchange chromatography on a Q-Sepharose column, FPLC-anion exchange chromatography on a Mono Q column, and FPLC-gel filtration on a Superdex 75 column. The purified nagaimo lectin presented as a single 35-kDa band in reducing SDS-PAGE while it exhibited a 70-kDa single band in non-reducing SDS-PAGE suggesting its dimeric nature. Nagaimo lectin displayed moderate thermostability, retaining full hemagglutinating activity after heating up to 62°C for 30 minutes. It also manifested stability over a wide pH range from pH 2 to 13. Nagaimo lectin was a galactose-specific lectin, as evidenced by binding with galactose and galactose-containing sugars such as lactose and raffinose. The minimum concentration of galactose, lactose and raffinose required to exert an inhibitory effect on hemagglutinating activity of nagaimo lectin was 20 mM, 5 mM and 40 mM, respectively. Nagaimo lectin inhibited the growth of some cancer cell lines including breast cancer MCF7 cells, hepatoma HepG2 cells and nasopharyngeal carcinoma CNE2 cells, with IC50 values of 3.71 µM, 7.12 µM and 19.79 µM, respectively, after 24 hour treatment with nagaimo lectin. The induction of phosphatidylserine externalization and mitochondrial depolarization indicated that nagaimo lectin evoked apoptosis in MCF7 cells. However, the anti-proliferative activity of nagaimo lectin was not blocked by application of galactose, signifying that the activity was not related to the carbohydrate binding specificity of the lectin.
Applied Microbiology and Biotechnology | 2016
Yau Sang Chan; Randy Chi Fai Cheung; Lixin Xia; Jack Ho Wong; Tzi Bun Ng; Wai-Yee Chan
Snake venoms are complex mixtures of small molecules and peptides/proteins, and most of them display certain kinds of bioactivities. They include neurotoxic, cytotoxic, cardiotoxic, myotoxic, and many different enzymatic activities. Snake envenomation is a significant health issue as millions of snakebites are reported annually. A large number of people are injured and die due to snake venom poisoning. However, several fatal snake venom toxins have found potential uses as diagnostic tools, therapeutic agent, or drug leads. In this review, different non-enzymatically active snake venom toxins which have potential therapeutic properties such as antitumor, antimicrobial, anticoagulating, and analgesic activities will be discussed.
Molecules | 2014
Senjam Sunil Singh; Hexiang Wang; Yau Sang Chan; Wen Liang Pan; Xiuli Dan; Cui Ming Yin; Ouafae Akkouh; Tzi Bun Ng
Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible applications of lectins from edible mushrooms. It further aims to update and discuss/examine the recent advancements in the study of these lectins regarding their structures, functions, and exploitable properties. A detailed tabling of all the available data for N-terminal sequences of these lectins is also presented here.
Biochemical Pharmacology | 2014
Wen Liang Pan; Jack Ho Wong; Evandro Fei Fang; Yau Sang Chan; Tzi Bun Ng; Randy Chi Fai Cheung
All primary nasopharyngeal carcinoma (NPC) tumors contain hypoxic regions which are implicated in decreased local control and increased distant metastases, as well as resistance to chemotherapy in advanced NPC patients. One of the promising therapeutic approaches for NPC is to use drugs that can target hypoxic factors in tumors. In the present investigation, the type I ribosome inactivating protein α-momorcharin (α-MMC), isolated from seeds of the bitter gourd Momordica charantia, reduced cell viability and inhibited clonogenic formation of human NPC CNE2 and HONE1 cells under normoxia and cobalt chloride-induced hypoxia. By comparison, α-MMC exhibited only slight cytotoxicity on human nasopharyngeal epithelial NP69 cells under normoxia. Interestingly, α-MMC suppressed the expression levels of hypoxia-inducible factor 1-alpha (HIF1α) and vascular endothelial growth factor (VEGF) in hypoxic NPC, as well as the growth of human umbilical vein endothelial cells. Further study disclosed that α-MMC targeted endoplasmic reticulum and down-regulated unfolded protein response (UPR) in NPC cells. Moreover, α-MMC induced apoptosis in NPC cells in a dose- and time-dependent manner. It initiated mitochondrial- and death receptor-mediated apoptotic signaling in CNE2 cells, but there was hardly any effect on HONE1 cells. In addition, α-MMC brought about G0/G1 phase cell cycle arrest in CNE2 cells and S phase arrest in HONE1 cells. Collectively, α-MMC preferentially exhibited inhibitory effect on normoxic and hypoxic NPC cells partly by blocking survival signaling (e.g. HIF1α, VEGF and UPR), and triggering apoptotic pathways mediated by mitochondria or death receptor. These observations indicate the potential utility of α-MMC for prophylaxis and therapy of NPC.