Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaxia Yuan is active.

Publication


Featured researches published by Yaxia Yuan.


Scientific Reports | 2016

Molecular Mechanism: The Human Dopamine Transporter Histidine 547 Regulates Basal and HIV-1 Tat Protein-Inhibited Dopamine Transport

Pamela M. Quizon; Wei-Lun Sun; Yaxia Yuan; Narasimha M. Midde; Chang-Guo Zhan; Jun Zhu

Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission.


Journal of Chemical Information and Modeling | 2011

LigBuilder 2: A Practical de Novo Drug Design Approach

Yaxia Yuan; Jianfeng Pei; Luhua Lai

We have developed a new version (2.0) of the de novo drug design program LigBuilder. With LigBuilder 2.0, the synthesis accessibility of designed compounds can be analyzed, and a cavity detection procedure is implemented to detect the positions and shapes of the binding sites on the surface of a given protein structure and to quantitatively estimate drugability. Ligands are designed to best fit the detected cavities using a set of rules for evaluation. Drug-like and privileged fragments are used to construct the ligands with the aid of internal and external absorption, distribution, metabolism, excretion, and toxicity (ADME/T) and drug-like filters.


Journal of Chemical Information and Modeling | 2014

De Novo Design of Multitarget Ligands with an Iterative Fragment-Growing Strategy

Erchang Shang; Yaxia Yuan; Xinyi Chen; Ying Liu; Jianfeng Pei; Luhua Lai

The discovery of multitarget drugs has recently attracted much attention. Most of the reported multitarget ligands have been serendipitous discoveries. Although a few methods have been developed for rational multitarget drug discovery, there is a lack of elegant methods for de novo multitarget drug design and optimization, especially for multiple targets with large differences in their binding sites. In this paper, we report the first de novo multitarget ligand design method, with an iterative fragment-growing strategy. Using this method, dual-target inhibitors for COX-2 and LTA₄H were designed, with the most potent one inhibiting PGE₂ and LTB₄ production in the human whole blood assay with IC₅₀ values of 7.0 and 7.1 μM, respectively. Our strategy is generally applicable in rational and efficient multitarget drug design, especially for the design of highly integrated inhibitors for proteins with dissimilar binding pockets.


ACS Chemical Neuroscience | 2015

Molecular Mechanism of HIV-1 Tat Interacting with Human Dopamine Transporter

Yaxia Yuan; Xiaoqin Huang; Narasimha M. Midde; Pamela M. Quizon; Wei-Lun Sun; Jun Zhu; Chang-Guo Zhan

Nearly 70% of HIV-1-infected individuals suffer from HIV-associated neurocognitive disorders (HAND). HIV-1 transactivator of transcription (Tat) protein is known to synergize with abused drugs and exacerbate the progression of central nervous system (CNS) pathology. Cumulative evidence suggest that the HIV-1 Tat protein exerts the neurotoxicity through interaction with human dopamine transporter (hDAT) in the CNS. Through computational modeling and molecular dynamics (MD) simulations, we develop a three-dimensional (3D) structural model for HIV-1 Tat binding with hDAT. The model provides novel mechanistic insights concerning how HIV-1 Tat interacts with hDAT and inhibits dopamine uptake by hDAT. In particular, according to the computational modeling, Tat binds most favorably with the outward-open state of hDAT. Residues Y88, K92, and Y470 of hDAT are predicted to be key residues involved in the interaction between hDAT and Tat. The roles of these hDAT residues in the interaction with Tat are validated by experimental tests through site-directed mutagensis and dopamine uptake assays. The agreement between the computational and experimental data suggests that the computationally predicted hDAT-Tat binding mode and mechanistic insights are reasonable and provide a new starting point to design further pharmacological studies on the molecular mechanism of HIV-1-associated neurocognitive disorders.


Journal of Neuroimmune Pharmacology | 2015

Mutations at Tyrosine 88, Lysine 92 and Tyrosine 470 of Human Dopamine Transporter Result in an Attenuation of HIV-1 Tat-Induced Inhibition of Dopamine Transport

Narasimha M. Midde; Yaxia Yuan; Pamela M. Quizon; Wei-Lun Sun; Xiaoqin Huang; Chang-Guo Zhan; Jun Zhu

HIV-1 transactivator of transcription (Tat) protein disrupts the dopamine (DA) neurotransmission by inhibiting DA transporter (DAT) function, leading to increased neurocognitive impairment in HIV-1 infected individuals. Through integrated computational modeling and pharmacological studies, we have demonstrated that mutation of tyrosine470 (Y470H) of human DAT (hDAT) attenuates Tat-induced inhibition of DA uptake by changing the transporter conformational transitions. The present study examined the functional influences of other substitutions at tyrosine470 (Y470F and Y470A) and tyrosine88 (Y88F) and lysine92 (K92M), two other relevant residues for Tat binding to hDAT, in Tat-induced inhibitory effects on DA transport. Y88F, K92M and Y470A attenuated Tat-induced inhibition of DA transport, implicating the functional relevance of these residues for Tat binding to hDAT. Compared to wild type hDAT, Y470A and K92M but not Y88F reduced the maximal velocity of [3H]DA uptake without changes in the Km. Y88F and K92M enhanced IC50 values for DA inhibition of [3H]DA uptake and [3H]WIN35,428 binding but decreased IC50 for cocaine and GBR12909 inhibition of [3H]DA uptake, suggesting that these residues are critical for substrate and these inhibitors. Y470F, Y470A, Y88F and K92M attenuated zinc-induced increase of [3H]WIN35,428 binding. Moreover, only Y470A and K92M enhanced DA efflux relative to wild type hDAT, suggesting mutations of these residues differentially modulate transporter conformational transitions. These results demonstrate Tyr88 and Lys92 along with Tyr470 as functional recognition residues in hDAT for Tat-induced inhibition of DA transport and provide mechanistic insights into identifying target residues on the DAT for Tat binding.


Current Pharmaceutical Design | 2014

Protein-Protein Interface Analysis and Hot Spots Identification for Chemical Ligand Design

Jing Chen; Xiaomin Ma; Yaxia Yuan; Jianfeng Pei; Luhua Lai

Rational design for chemical compounds targeting protein-protein interactions has grown from a dream to reality after a decade of efforts. There are an increasing number of successful examples, though major challenges remain in the field. In this paper, we will first give a brief review of the available methods that can be used to analyze protein-protein interface and predict hot spots for chemical ligand design. New developments of binding sites detection, ligandability and hot spots prediction from the authors group will also be described. Pocket V.3 is an improved program for identifying hot spots in protein-protein interface using only an apo protein structure. It has been developed based on Pocket V.2 that can derive receptor-based pharmacophore model for ligand binding cavity. Given similarities and differences between the essence of pharmacophore and hot spots for guiding design of chemical compounds, not only energetic but also spatial properties of protein-protein interface are used in Pocket V.3 for dealing with protein-protein interface. In order to illustrate the capability of Pocket V.3, two datasets have been used. One is taken from ASEdb and BID having experimental alanine scanning results for testing hot spots prediction. The other is taken from the 2P2I database containing complex structures of protein-ligand binding at the original protein-protein interface for testing hot spots application in ligand design.


Scientific Reports | 2016

Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake

Yaxia Yuan; Pamela M. Quizon; Wei-Lun Sun; Jianzhuang Yao; Jun Zhu; Chang-Guo Zhan

HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND.


Scientific Reports | 2016

Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

Jianzhuang Yao; Yaxia Yuan; Fang Zheng; Chang-Guo Zhan

Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.


Bioorganic & Medicinal Chemistry Letters | 2017

Selective inhibitors of human mPGES-1 from structure-based computational screening

Ziyuan Zhou; Yaxia Yuan; Shuo Zhou; Kai Ding; Fang Zheng; Chang-Guo Zhan

Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs. Although various mPGES-1 inhibitors have been reported in literature, few have entered clinical trials and none has been proven clinically useful so far. It is highly desired for developing the next generation of therapeutics for inflammation-related diseases to design and discover novel inhibitors of mPGES-1 with new scaffolds. Here, we report the identification of a series of new, potent and selective inhibitors of human mPGES-1 with diverse scaffolds through combined computational and experimental studies. The computationally modeled binding structures of these new inhibitors of mPGES-1 provide some interesting clues for rational design of modified structures of the inhibitors to more favorably bind with mPGES-1.


Future Medicinal Chemistry | 2016

Computational modeling of human dopamine transporter structures, mechanism and its interaction with HIV-1 transactivator of transcription

Yaxia Yuan; Xiaoqin Huang; Jun Zhu; Chang-Guo Zhan

This is a brief review of computational modeling studies on the detailed structures and mechanism of human dopamine transporter (hDAT), as well as its interaction with HIV-1 transactivator of transcription (Tat). Extensive molecular modeling, docking and dynamics simulations have resulted in reasonable structural models of hDAT in three typical conformational states, its dopamine uptake mechanism and its interaction with Tat. The obtained hDAT models in different conformational states and their complexes with dopamine and Tat have provided novel structural and mechanistic insights concerning how hDAT uptakes dopamine and how Tat affects the dopamine uptake by hDAT. The computational insights, that are consistent with available experimental data, should be valuable for future rational design of novel therapeutic strategies for treatment of HIV-associated neurocognitive disorders.

Collaboration


Dive into the Yaxia Yuan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Zhu

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Pamela M. Quizon

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Wei-Lun Sun

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Fang Zheng

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Narasimha M. Midde

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Ding

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Shuo Zhou

University of Kentucky

View shared research outputs
Researchain Logo
Decentralizing Knowledge