Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaxian Hu is active.

Publication


Featured researches published by Yaxian Hu.


Science of The Total Environment | 2017

Temperature sensitivity of soil respiration: Synthetic effects of nitrogen and phosphorus fertilization on Chinese Loess Plateau.

Rui Wang; Qiqi Sun; Ying Wang; Qingfang Liu; Lanlan Du; Man Zhao; Xin Gao; Yaxian Hu; Shengli Guo

Nitrogen (N) and phosphorus (P) fertilization has the potential to alter soil respiration temperature sensitivity (Q10) by changing soil biochemical and crop physiological process. A four-year field experiment was conducted to determine how Q10 responded to these biochemical and physiological changes in rain-fed agro-ecosystems on the semi-arid Loess Plateau. Soil respiration, as well as biotic and abiotic factors were measured in winter wheat (Triticum aestivum L.), with three fertilization treatments: (no fertilization (CK), 160kgNhm-1 (N), and 160kgNha-1 with 39kgPha-1 (N+P). Mean annual soil respiration rate (calculated by averaging the four years) in the N treatment and N+P treatment was 18% and 48% higher than that in the CK treatment, respectively; and it was increased by 26% (14%-48%) in the N+P treatment as compared with that in the N treatment. The decrease of Q10 in the N and N+P treatments against the CK treatment was not stable for each year, ranging from 0.01 to 0.28. The maximum decrease of Q10 in the N and N+P treatments was 10% and 15% in 2014-2015, while in other years the decrease of Q10 was numerical but not significant. Soil microbial biomass carbon (SMBC) was increased by 10% and 50%, dissolved organic carbon (DOC) was increased by 6% and 21%, and photosynthesis rate was increased ranging from 6% to 33% with N and N+P fertilization. The relative abundance of Acidobacteria, Actinobacteria and Chloroflexi were significantly higher by 32.9%-54.1% in N addition soils (N and N+P) compared to CK treatment, whereas additional P application into soils increased the relative abundance of the family Micrococcaceae, Nocardioidaceae and Chitinophagaceae. Soil respiration was positively related to SMBC, DOC and photosynthesis rate (p<0.05). However, variation in Q10 may be related to the increase of soil mineral N content and variation of the relative abundance of soil microbial community in our study. Nitrogen and additional phosphorus fertilization regimes affect soil respiration and temperature sensitivity differently.


Biogeochemistry | 2016

Transport-distance specific SOC distribution: Does it skew erosion induced C fluxes?

Yaxian Hu; Asmeret Asefaw Berhe; Marilyn L. Fogel; Goswin Heckrath; Nikolaus J. Kuhn

The net effect of soil erosion by water, as a sink or source of atmospheric carbon dioxide (CO2), is determined by the spatial (re-)distribution and stability of eroded soil organic carbon (SOC), and the dynamic replacement of eroded C by the production of new photosynthate. The depositional position of eroded SOC is a function of the transport distances of soil fractions where the SOC is stored. In theory, the transport distances of soil fractions are related to their settling velocities under given flow conditions. Yet, very few field investigations have been conducted to examine the actual movement of eroded soil fractions along hillslopes, let alone the re-distribution pattern of SOC fractions. Eroding sandy soils and sediment were sampled after a series of rainfall events along a slope on a freshly seeded cropland in Jutland, Denmark. All the soil samples were fractionated into five settling classes using a settling tube apparatus. The spatial distribution of soil settling classes shows a coarsening effect immediately below the eroding slope, followed by a fining trend at the slope tail. These findings support the validity of the conceptual model proposed by Starr et al. (Land Degrad Dev 11:83–91, 2000) to predict SOC redistribution patterns along hillslopes. The δ13C values of soil fractions were more positive at the footslope than on the slope shoulder or at the slope tail, suggesting enhanced decomposition rate of fresh SOC input at the footslope during or after erosion-induced transport. Pronounced CO2 emission rates at the slope tail also suggest a higher potential for decomposition of the eroded SOC after deposition. Overall, our results illustrate that immediate deposition of fast settling soil fractions and the associated SOC at footslopes, and potential CO2 emissions during or immediately after transport, must be appropriately accounted for in attempts to quantify the role of soil erosion in terrestrial C sequestration. A SOC erodibility parameter based on actual settling velocity distribution of eroded fractions is needed to better calibrate soil erosion models.


Science of The Total Environment | 2018

Contrasting responses of soil respiration and temperature sensitivity to land use types: Cropland vs. apple orchard on the Chinese Loess Plateau

Rui Wang; Qiqi Sun; Ying Wang; Wei Zheng; Lunguang Yao; Yaxian Hu; Shengli Guo

Land use plays an essential role in regional carbon cycling, potentially influencing the exchange rates of CO2 flux between soil and the atmosphere in terrestrial ecosystems. Temperature sensitivity of soil respiration (Q10), as an efficient parameter to reflect the possible feedback between the global carbon cycle and climate change, has been extensively studied. However, very few reports have assessed the difference in temperature sensitivity of soil respiration under different land use types. In this study, a three-year field experiment was conducted in cropland (winter wheat, Triticum aestivum L.) and apple orchard (Malus domestica Borkh) on the semi-arid Loess Plateau from 2011 to 2013. Soil respiration (measured using Li-Cor 8100), bacterial community structure (represented by 16S rRNA), soil enzyme activities, and soil physicochemical properties of surface soil were monitored. The average annual soil respiration rate in the apple orchard was 12% greater than that in the cropland (2.01 vs. 1.80μmolm-2s-1), despite that the average Q10 values in the apple orchard was 15% lower than that in the cropland (ranging from 1.63 to 1.41). As to the differences among predominant phyla, Proteobacteria was 26% higher in the apple orchard than that in the cropland, whereas Actinobacteria and Acidobacteria were 18% and 36% lower in the apple orchard. The β-glucosidase and cellobiohydrolase activity were 15% (44.92 vs. 39.09nmolh-1g-1) and 22% greater (21.39 vs. 17.50nmolh-1g-1) in the apple orchard than that in the cropland. Compared to the cropland, the lower Q10 values in the apple orchard resulted from the variations of bacterial community structure and β-glucosidase and cellobiohydrolase activity. In addition, the lower C: N ratios in the apple orchard (6.50 vs. 8.40) possibly also contributed to its lower Q10 values. Our findings call for further studies to include the varying effects of land use types into consideration when applying Q10 values to predict the potential CO2 efflux feedbacks between terrestrial ecosystems and future climate scenarios.


Scientific Reports | 2018

Impacts of simulated erosion and soil amendments on greenhouse gas fluxes and maize yield in Miamian soil of central Ohio

Yanru Liang; Rattan Lal; Shengli Guo; Ruiqiang Liu; Yaxian Hu

Erosion-induced topsoil loss is a threat to sustainable productivity. Topsoil removal from, or added to, the existing surface is an efficient technique to simulate on-site soil erosion and deposition. A 15-year simulated erosion was conducted at Waterman Farm of Ohio State University to assess impacts of topsoil depth on greenhouse gas (GHG) emissions and maize yield. Three topsoil treatments were investigated: 20 cm topsoil removal, 20 cm topsoil addition, and undisturbed control. Results show that the average global warming potential (GWP) (Mg CO2 Eq ha−1 growing season−1) from the topsoil removal plot (18.07) exhibited roughly the same value as that from the undisturbed control plot (18.11), but declined evidently from the topsoil addition plot (10.58). Maize yield decreased by 51% at the topsoil removal plot, while increased by 47% at the topsoil addition plot, when compared with the undisturbed control (7.45 Mg ha−1). The average GWP of erosion-deposition process was 21% lower than that of the undisturbed control, but that greenhouse gas intensity (GHGI) was 22% higher due to lower yields from the topsoil removal plot. Organic manure application enhanced GWP by 15%, and promoted maize yield by 18%, but brought a small reduction GHGI (3%) against the N-fertilizer application.


PLOS ONE | 2018

Spatial variations of soil respiration and temperature sensitivity along a steep slope of the semiarid Loess Plateau

Qiqi Sun; Rui Wang; Yaxian Hu; Lunguang Yao; Shengli Guo

The spatial heterogeneity of soil respiration and its temperature sensitivity pose a great challenge to accurately estimate the carbon flux in global carbon cycling, which has primarily been researched in flatlands versus hillslope ecosystems. On an eroded slope (35°) of the semiarid Loess Plateau, soil respiration, soil moisture and soil temperature were measured in situ at upper and lower slope positions in triplicate from 2014 until 2016, and the soil biochemical and microbial properties were determined. The results showed that soil respiration was significantly greater (by 44.2%) at the lower slope position (2.6 μmol m–2 s–1) than at the upper slope position, as were soil moisture, carbon, nitrogen fractions and root biomass. However, the temperature sensitivity was 13.2% greater at the upper slope position than at the lower slope position (P < 0.05). The soil fungal community changed from being Basidiomycota-dominant at the upper slope position to being Zygomycota-dominant at the lower slope position, corresponding with increased β-D-glucosidase activity at the upper slope position than at the lower slope position. We concluded that soil respiration was enhanced by the greater soil moisture, root biomass, carbon and nitrogen contents at the lower slope position than at the upper slope position. Moreover, the increased soil respiration and decreased temperature sensitivity at the lower slope position were partially due to copiotrophs replacing oligotrophs. Such spatial variations along slopes must be properly accounted for when estimating the carbon budget and feedback of future climate change on hillslope ecosystems.


PLOS ONE | 2018

Bioenergy crop induced changes in soil properties: A case study on Miscanthus fields in the Upper Rhine Region

Yaxian Hu; Gerhard Schäfer; Joëlle Duplay; Nikolaus Kuhn

Biomass as a renewable energy source has become increasingly prevalent in Europe to comply with greenhouse gas emission targets. As one of the most efficient perennial bioenergy crops, there is great potential in the Upper Rhine Region to explore biomass utilization of Miscanthus to confront climate change and land use demand in the future. Yet, the impacts of Miscanthus cultivation on soil quality have not been adequately explored. This study investigated the soil profiles of five- and 20-year-old Miscanthus fields (1 m depth) as well as grassland for reference in eastern France and Switzerland. The soil organic carbon (SOC) concentrations and δ13C compositions of four soil layers (0–10 cm, 10–40 cm, 40–70 cm and 70–100 cm) were determined. The CO2 emission rates of the topsoil were monitored for 42 days. Our results showed that Miscanthus, in general, could increase the SOC stocks compared to grassland, but the benefits of SOC sequestration were constrained to the surface soil. Isotopically, the Miscanthus-derived SOC ranged from 69% in the top 10 cm of soil down to only 7% in the 70 cm to 100 cm layer. This result raises the risk of overestimating the total net benefits of Miscanthus cultivation, when simply using the greater SOC stocks near the surface soil to represent the SOC-depleted deep soil layers. The Miscanthus fields had greater CO2 emissions, implying that the Miscanthus fields generated greater ecosystem respiration, rather than larger net ecosystem exchanges. Compared to the grassland soils, the surface soils of the Miscanthus fields tended to have a risk of acidification while having higher concentrations of phosphorus and potassium, calling for the inclusion of soil characteristics and SOC stability when evaluating the impacts of long-term Miscanthus cultivation on both current and future land use changes.


PLOS ONE | 2016

Temperature Sensitivity of Soil Respiration to Nitrogen Fertilization: Varying Effects between Growing and Non-Growing Seasons

Qingfang Liu; Rui Wang; Rujian Li; Yaxian Hu; Shengli Guo

Nitrogen (N) fertilization has a considerable effect on food production and carbon cycling in agro-ecosystems. However, the impacts of N fertilization rates on the temperature sensitivity of soil respiration (Q10) were controversial. Five N rates (N0, N45, N90, N135, and N180) were applied to a continuous winter wheat (Triticum aestivum L.) crop on the semi-arid Loess Plateau, and the in situ soil respiration was monitored during five consecutive years from 2008 to 2013. During the growing season, the mean soil respiration rates increased with increasing N fertilization rates, peaking at 1.53 μmol m−2s−1 in the N135 treatment. A similar dynamic pattern was observed during the non-growing season, yet on average with 7.3% greater soil respiration rates than the growing season. In general for all the N fertilization treatments, the mean Q10 value during the non-growing season was significantly greater than that during the growing season. As N fertilization rates increased, the Q10 values did not change significantly in the growing season but significantly decreased in the non-growing season. Overall, N fertilization markedly influenced soil respirations and Q10 values, in particular posing distinct effects on the Q10 values between the growing and non-growing seasons.


Biogeosciences | 2014

Aggregates reduce transport distance of soil organic carbon: are our balances correct?

Yaxian Hu; Nikolaus J. Kuhn


Agriculture | 2013

Temporal Variation of SOC Enrichment from Interrill Erosion over Prolonged Rainfall Simulations

Yaxian Hu; Wolfgang Fister; Nikolaus J. Kuhn


Agriculture, Ecosystems & Environment | 2016

Conservation tillage and sustainable intensification of agriculture: regional vs. global benefit analysis

Nikolaus J. Kuhn; Yaxian Hu; Lena Bloemertz; Jin He; Hongwen Li; Philip Greenwood

Collaboration


Dive into the Yaxian Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiqi Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge