Yayuk R. Suhardjono
Indonesian Institute of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yayuk R. Suhardjono.
Frontiers in Zoology | 2013
Alexander Riedel; Katayo Sagata; Yayuk R. Suhardjono; Rene Tänzler; Michael Balke
BackgroundA so called “taxonomic impediment” has been recognized as a major obstacle to biodiversity research for the past two decades. Numerous remedies were then proposed. However, neither significant progress in terms of formal species descriptions, nor a minimum standard for descriptions have been achieved so far. Here, we analyze the problems of traditional taxonomy which often produces keys and descriptions of limited practical value. We suggest that phylogenetics and phenetics had a subtle and so far unnoticed effect on taxonomy leading to inflated species descriptions.DiscussionThe term “turbo-taxonomy” was recently coined for an approach combining cox1 sequences, concise morphological descriptions by an expert taxonomist, and high-resolution digital imaging to streamline the formal description of larger numbers of new species. We propose a further development of this approach which, together with open access web-publication and automated pushing of content from journal into a wiki, may create the most efficient and sustainable way to conduct taxonomy in the future. On demand, highly concise descriptions can be gradually updated or modified in the fully versioned wiki-framework we use. This means that the visibility of additional data is not compromised, while the original species description -the first version- remains preserved in the wiki, and of course in the journal version. A DNA sequence database with an identification engine replaces an identification key, helps to avoid synonyms and has the potential to detect grossly incorrect generic placements. We demonstrate the functionality of a species-description pipeline by naming 101 new species of hyperdiverse New Guinea Trigonopterus weevils in the open-access journal ZooKeys.SummaryFast track taxonomy will not only increase speed, but also sustainability of global species inventories. It will be of great practical value to all the other disciplines that depend on a usable taxonomy and will change our perception of global biodiversity. While this approach is certainly not suitable for all taxa alike, it is the tool that will help to tackle many hyperdiverse groups and pave the road for more sustainable comparative studies, e.g. in community ecology, phylogeography and large scale biogeographic studies.
Proceedings of the Royal Society of London B: Biological Sciences | 2014
Rene Tänzler; Emmanuel F. A. Toussaint; Yayuk R. Suhardjono; Michael Balke; Alexander Riedel
The fauna of Bali, situated immediately west of Wallaces Line, is supposedly of recent Javanese origin and characterized by low levels of endemicity. In flightless Trigonopterus weevils, however, we find 100% endemism for the eight species here reported for Bali. Phylogeographic analyses show extensive in situ differentiation, including a local radiation of five species. A comprehensive molecular phylogeny and ancestral area reconstruction of Indo-Malayan–Melanesian species reveals a complex colonization pattern, where the three Balinese lineages all arrived from the East, i.e. all of them transgressed Wallaces Line. Although East Java possesses a rich fauna of Trigonopterus, no exchange can be observed with Bali. We assert that the biogeographic picture of Bali has been dominated by the influx of mobile organisms from Java, but different relationships may be discovered when flightless invertebrates are studied. Our results highlight the importance of in-depth analyses of spatial patterns of biodiversity.
ZooKeys | 2014
Alexander Riedel; Rene Tänzler; Michael Balke; Cahyo Rahmadi; Yayuk R. Suhardjono
Abstract The genus Trigonopterus Fauvel, 1862 is highly diverse in Melanesia. Only one species, Trigonopterus amphoralis Marshall, 1925 was so far recorded West of Wallace’s Line (Eastern Sumatra). Based on focused field-work the fauna from Sundaland (Sumatra, Java, Bali, Palawan) and the Lesser Sunda Islands (Lombok, Sumbawa, Flores) is here revised. We redescribe Trigonopterus amphoralis Marshall and describe an additional 98 new species: Trigonopterus acuminatus sp. n., Trigonopterus aeneomicans sp. n., Trigonopterus alaspurwensis sp. n., Trigonopterus allopatricus sp. n., Trigonopterus allotopus sp. n., Trigonopterus angulicollis sp. n., Trigonopterus argopurensis sp. n., Trigonopterus arjunensis sp. n., Trigonopterus asper sp. n., Trigonopterus attenboroughi sp. n., Trigonopterus baliensis sp. n., Trigonopterus batukarensis sp. n., Trigonopterus bawangensis sp. n., Trigonopterus binodulus sp. n., Trigonopterus bornensis sp. n., Trigonopterus cahyoi sp. n., Trigonopterus costipennis sp. n., Trigonopterus cuprescens sp. n., Trigonopterus cupreus sp. n., Trigonopterus dacrycarpi sp. n., Trigonopterus delapan sp. n., Trigonopterus dentipes sp. n., Trigonopterus diengensis sp. n., Trigonopterus dimorphus sp. n., Trigonopterus disruptus sp. n., Trigonopterus dua sp. n., Trigonopterus duabelas sp. n., Trigonopterus echinatus sp. n., Trigonopterus empat sp. n., Trigonopterus enam sp. n., Trigonopterus fissitarsis sp. n., Trigonopterus florensis sp. n., Trigonopterus foveatus sp. n., Trigonopterus fulgidus sp. n., Trigonopterus gedensis sp. n., Trigonopterus halimunensis sp. n., Trigonopterus honjensis sp. n., Trigonopterus ijensis sp. n., Trigonopterus javensis sp. n., Trigonopterus kalimantanensis sp. n., Trigonopterus kintamanensis sp. n., Trigonopterus klatakanensis sp. n., Trigonopterus lampungensis sp. n., Trigonopterus latipes sp. n., Trigonopterus lima sp. n., Trigonopterus lombokensis sp. n., Trigonopterus merubetirensis sp. n., Trigonopterus mesehensis sp. n., Trigonopterus micans sp. n., Trigonopterus misellus sp. n., Trigonopterus palawanensis sp. n., Trigonopterus pangandaranensis sp. n., Trigonopterus paraflorensis sp. n., Trigonopterus pararugosus sp. n., Trigonopterus parasumbawensis sp. n., Trigonopterus pauxillus sp. n., Trigonopterus payungensis sp. n., Trigonopterus porcatus sp. n., Trigonopterus pseudoflorensis sp. n., Trigonopterus pseudosumbawensis sp. n., Trigonopterus punctatoseriatus sp. n., Trigonopterus ranakensis sp. n., Trigonopterus relictus sp. n., Trigonopterus rinjaniensis sp. n., Trigonopterus roensis sp. n., Trigonopterus rugosostriatus sp. n., Trigonopterus rugosus sp. n., Trigonopterus rutengensis sp. n., Trigonopterus saltator sp. n., Trigonopterus santubongensis sp. n., Trigonopterus sasak sp. n., Trigonopterus satu sp. n., Trigonopterus schulzi sp. n., Trigonopterus sebelas sp. n., Trigonopterus sembilan sp. n., Trigonopterus sepuluh sp. n., Trigonopterus seriatus sp. n., Trigonopterus serratifemur sp. n., Trigonopterus setifer sp. n., Trigonopterus silvestris sp. n., Trigonopterus singkawangensis sp. n., Trigonopterus singularis sp. n., Trigonopterus sinuatus sp. n., Trigonopterus squalidus sp. n., Trigonopterus sumatrensis sp. n., Trigonopterus sumbawensis sp. n., Trigonopterus sundaicus sp. n., Trigonopterus suturalis sp. n., Trigonopterus syarbis sp. n., Trigonopterus telagensis sp. n., Trigonopterus tepalensis sp. n., Trigonopterus tiga sp. n., Trigonopterus trigonopterus sp. n., Trigonopterus tujuh sp. n., Trigonopterus ujungkulonensis sp. n., Trigonopterus variolosus sp. n., Trigonopterus vulcanicus sp. n., Trigonopterus wallacei sp. n.. All new species are authored by the taxonomist-in-charge, Alexander Riedel. Most species belong to the litter fauna of primary wet evergreen forests. This habitat has become highly fragmented in the study area and many of its remnants harbor endemic species. Conservation measures should be intensified, especially in smaller and less famous sites to minimize the number of species threatened by extinction.
Scientific Reports | 2016
Rene Tänzler; Matthew H. Van Dam; Emmanuel F. A. Toussaint; Yayuk R. Suhardjono; Michael Balke; Alexander Riedel
The Sunda Arc forms an almost continuous chain of islands and thus a potential dispersal corridor between mainland Southeast Asia and Melanesia. However, the Sunda Islands have rather different geological histories, which might have had an important impact on actual dispersal routes and community assembly. Here, we reveal the biogeographical history of hyperdiverse and flightless Trigonopterus weevils. Different approaches to ancestral area reconstruction suggest a complex east to west range expansion. Out of New Guinea, Trigonopterus repeatedly reached the Moluccas and Sulawesi transgressing Lydekker′s Line. Sulawesi repeatedly acted as colonization hub for different segments of the Sunda Arc. West Java, East Java and Bali are recognized as distinct biogeographic areas. The timing and diversification of species largely coincides with the geological chronology of island emergence. Colonization was not inhibited by traditional biogeographical boundaries such as Wallace’s Line. Rather, colonization patterns support distance dependent dispersal and island age limiting dispersal.
Systematic Entomology | 2016
Alexander Riedel; Rene Tänzler; Joan Pons; Yayuk R. Suhardjono; Michael Balke
The monophyly of the highly diverse weevil subfamily Cryptorhynchinae is tested with a dataset of 203 taxa representing 159 genera of Curculionoidea, 105 of them Cryptorhynchinae s.l. We construct a phylogeny based on an alignment of 5523 bp, consisting of fragments from two mitochondrial genes (two fragments of COI, 16S) and seven nuclear genes (ArgK, CAD, EF1α, enolase, H4, 18S, 28S). Analyses of maximum likelihood and Bayes inference recovered largely congruent results. Groups with different morphology of the rostral furrow (e.g. Aedemonini, Camptorhinini, Cryptorhynchini, Ithyporini) are not closely related to each other. However, most taxa with a mesosternal receptacle are monophyletic and here defined as Cryptorhynchinae s.s., comprising Cryptorhynchini, Gasterocercini, Torneumatini and Psepholacini, but also Arachnopodini and Idopelma Faust. The genus Phyrdenus LeConte is excluded from Cryptorhynchinae and transferred to Conotrachelini of Molytinae. Thus defined, the group still comprises several thousand species with centres of its diversity in South America and Australia. The early lineages we find in America and the Palearctic, while the extremely diverse faunas of Australia and neighbouring islands mainly belong to a more recent, species‐rich radiation. This also includes a clade comprising the majority of litter‐inhabiting species of New Zealand and the genus Miocalles Pascoe. Flightlessness was attained repeatedly and resulted in convergent evolution of a similar habitus in different zoogeographic regions, mainly exhibited by the polyphyletic genus Acalles Schoenherr.
Pesquisa Agropecuaria Brasileira | 2009
Rodolphe Rougerie; Thibaud Decaëns; Louis Deharveng; David Porco; Sam W. James; Chih-Han Chang; Benoit Richard; Mikhail Potapov; Yayuk R. Suhardjono; Paul D. N. Hebert
Zootaxa | 2014
Tony Robillard; Andrej V. Gorochov; Simon Poulain; Yayuk R. Suhardjono
Zootaxa | 2001
Yayuk R. Suhardjono; Louis Deharveng
Archive | 2012
Yayuk R. Suhardjono; Louis Deharveng; Anne Bedos
Archive | 2012
Alexander Riedel; Katayo Sagata; Yayuk R. Suhardjono; Rene Tänzler; Michael Balke