Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yazad Irani is active.

Publication


Featured researches published by Yazad Irani.


Acta Biomaterialia | 2010

Evaluation of mesoporous silicon/polycaprolactone composites as ophthalmic implants.

Soheila Kashanian; Frances J. Harding; Yazad Irani; Sonja Klebe; Kirsty Marshall; Armando Loni; Leigh T. Canham; Dongmei Fan; Keryn Anne Williams; Nicolas H. Voelcker; Jeffery L. Coffer

The suitability of porous silicon (pSi) encapsulated in microfibers of the biodegradable polymer polycaprolactone (PCL) for ophthalmic applications was evaluated, using both a cell attachment assay with epithelial cells and an in vivo assessment of biocompatibility in rats. Microfibers of PCL containing encapsulated pSi particles at two different concentrations (6 and 20 wt.%) were fabricated as non-woven fabrics. Given the dependence of Si particle dissolution kinetics on pSi surface chemistry, two different types of pSi particles (hydride-terminated and surface-oxidized) were evaluated for each of the two particle concentrations. Significant attachment of a human lens epithelial cell line (SRA 01/04) to all four types of scaffolds within a 24h period was observed. Implantation of Si fabric samples beneath the conjunctiva of rat eyes for 8 weeks demonstrated that the composite materials did not cause visible infection or inflammation, and did not erode the ocular surface. We suggest that these novel composite materials hold considerable promise as scaffolds in tissue engineering with controlled release applications.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide)

Stephen James McInnes; Yazad Irani; Keryn Anne Williams; Nicolas H. Voelcker

AIMS Porous silicon (pSi) and poly(L-lactide) (PLLA) both display good biocompatibility and tunable degradation behavior, suggesting that composites of both materials are suitable candidates as biomaterials for localized drug delivery into the human body. The combination of a pliable and soft polymeric material with a hard inorganic porous material of high drug loading capacity may engender improved control over degradation and drug release profiles and be beneficial for the preparation of advanced drug delivery devices and biodegradable implants or scaffolds. MATERIALS & METHODS In this work, three different pSi and PLLA composite formats were prepared. The first format involved grafting PLLA from pSi films via surface-initiated ring-opening polymerization (pSi-PLLA [grafted]). The second format involved spin coating a PLLA solution onto oxidized pSi films (pSi-PLLA [spin-coated]) and the third format consisted of a melt-cast PLLA monolith containing dispersed pSi microparticles (pSi-PLLA [monoliths]). The surface characterization of these composites was performed via infrared spectroscopy, scanning electron microscopy, atomic force microscopy and water contact angle measurements. The composite materials were loaded with a model cytotoxic drug, camptothecin (CPT). Drug release from the composites was monitored via fluorimetry and the release profiles of CPT showed distinct characteristics for each of the composites studied. RESULTS In some cases, controlled CPT release was observed for more than 5 days. The PLLA spin coat on pSi and the PLLA monolith containing pSi microparticles both released a CPT payload in accordance with the Higuchi and Ritger-Peppas release models. Composite materials were also brought into contact with human lens epithelial cells to determine the extent of cytotoxicity. CONCLUSION We observed that all the CPT containing materials were highly efficient at releasing bioactive CPT, based on the cytotoxicity data.


Journal of Materials Chemistry B | 2015

Surface engineering of porous silicon to optimise therapeutic antibody loading and release

Steven J. P. McInnes; Christopher T. Turner; Sameer A. Al-Bataineh; Marta J. I. Airaghi Leccardi; Yazad Irani; Keryn Anne Williams; Nicolas H. Voelcker

The proinflammatory cytokine, tumor necrosis factor-α (TNF-α), is elevated in several diseases such as uveitis, rheumatoid arthritis and non-healing chronic wounds. Adding Infliximab, a chimeric IgG1 monoclonal antibody raised against TNF-α, to chronic wound fluid can neutralise human TNF-α, thereby providing a potential therapeutic option for chronic wound healing. However, to avoid the need for repeated application in a clinical setting, and to protect the therapeutic antibody from the hostile environment of the wound, suitable delivery vehicles are required. Porous silicon (pSi) is a biodegradable high surface area material commonly employed for drug delivery applications. In this study, the use of pSi microparticles (pSi MPs) for the controlled release of Infliximab to disease environments, such as chronic wounds, is demonstrated. Surface chemistry and pore parameters for Infliximab loading are first optimised in pSi films and loading conditions are transferred to pSi MPs. Loading regimens exceeding 60 μg of Infliximab per mg of pSi are achieved. Infliximab is released with zero-order release kinetics over the course of 8 days. Critically, the released antibody remains functional and is able to sequester TNF-α over a weeklong timeframe; suitable for a clinical application in chronic wound therapy.


Journal of Immunological Methods | 2008

PCR amplification of the functional immunoglobulin heavy chain variable gene from a hybridoma in the presence of two aberrant transcripts

Yazad Irani; Melinda Tea; Ronald G. Tilton; Douglas John Coster; Keryn Anne Williams; Helen M. Brereton

Single chain antibody fragment genes are commonly created by splicing together the immunoglobulin light chain (VL) and heavy chain variable (VH) genes of a monoclonal antibody produced by a hybridoma. Selective PCR amplification of the functional immunoglobulin variable gene rearrangements can be complicated by the existence of other unproductive immunoglobulin gene rearrangements in the hybridoma. Here we report the detection and preferential amplification of aberrant transcripts from two unproductive VH gene rearrangements derived from the fusion partner of a hybridoma. The functional VH gene of the monoclonal antibody was successfully amplified by selective use of primers to individual JH segments.


Investigative Ophthalmology & Visual Science | 2016

Species Cross-Reactivity of Antibodies Used to Treat Ophthalmic Conditions.

Yazad Irani; Pierre Scotney; Andrew D. Nash; Keryn Anne Williams

PURPOSE The species cross-reactivity of the monoclonal antibodies infliximab, bevacizumab, and an anti-VEGF-B antibody, 2H10, in humans and rodents was determined. METHODS The binding of infliximab to human, mouse, and rat TNF-α, of bevacizumab to human, mouse, and rat VEGF-A, and of the 2H10 antibody to human, mouse, and rat VEGF-B was evaluated by ELISA. The sequence of human, mouse, and rat TNF-α and VEGF-A at the binding sites for infliximab and bevacizumab were compared. RESULTS Infliximab bound to human TNF-α, but no binding to mouse or rat TNF-α was detected between 10 pg/mL and 10 μg/ml. Sequence comparison of the binding site revealed four changes in mouse and five in rat TNF-α compared with human. Bevacizumab bound strongly to human VEGF-A, but showed 5-log weaker binding to both mouse and rat VEGF-A. There was a single amino acid substitution in mouse and rat VEGF-A at the bevacizumab binding site. The 2H10 antibody displayed a similar binding profile to human, mouse, and rat VEGF-B. CONCLUSIONS The species cross-reactivity of monoclonal antibodies should be determined prior to their use in preclinical animal models. The 2H10 antibody binds to human, mouse, and rat VEGF-B making it suitable for testing in rodent models of human disease.


Scientific Reports | 2017

Oral Mucosal Epithelial Cells Grown on Porous Silicon Membrane for Transfer to the Rat Eye

Yazad Irani; Sonja Klebe; Steven J. P. McInnes; Marek Jasieniak; Nicolas H. Voelcker; Keryn Anne Williams

Dysfunction of limbal stem cells or their niche can result in painful, potentially sight-threatening ocular surface disease. We examined the utility of surface-modified porous-silicon (pSi) membranes as a scaffold for the transfer of oral mucosal cells to the eye. Male-origin rat oral mucosal epithelial cells were grown on pSi coated with collagen-IV and vitronectin, and characterised by immunocytochemistry. Scaffolds bearing cells were implanted into normal female rats, close to the limbus, for 8 weeks. Histology, immunohistochemistry and a multiplex nested PCR for sry were performed to detect transplanted cells. Oral mucosal epithelial cells expanded on pSi scaffolds expressed the corneal epithelial cell marker CK3/12. A large percentage of cells were p63+, indicative of proliferative potential, and a small proportion expressed ABCG2+, a putative stem cell marker. Cell-bearing scaffolds transferred to the eyes of live rats, were well tolerated, as assessed by endpoint histology. Immunohistochemistry for pan-cytokeratins demonstrated that transplanted epithelial cells were retained on the pSi membranes at 8 weeks post-implant, but were not detectable on the central cornea using PCR for sry. The pSi scaffolds supported and retained transplanted rat oral mucosal epithelial cells in vitro and in vivo and recapitulate some aspects of an artificial stem cell niche.


Investigative Ophthalmology & Visual Science | 2017

An Anti–VEGF-B Antibody Fragment Induces Regression of Pre-Existing Blood Vessels in the Rat Cornea

Yazad Irani; Pierre Scotney; Sonja Klebe; Lauren A. Mortimer; Andrew D. Nash; Keryn Anne Williams

Purpose We tested the ability of an antibody fragment with specificity for vascular endothelial growth factor-B (VEGF-B) to regress nascent and established corneal blood vessels in the rat. Methods A single chain variable antibody fragment (scFv) with specificity for VEGF-B was engineered from the 2H10 hybridoma. Binding to rat, mouse, and human VEGF-B was confirmed by surface plasmon resonance. Activity of the anti-VEGF-B scFv on developing and established corneal blood vessels was assessed following unilateral superficial cautery in male and female outbred Sprague Dawley rats. Groups (untreated, control scFv-treated, or anti-VEGF-B scFv-treated) comprised 6 to 22 rats. Treatment consisted of 5 μL scFv, 1 mg/mL, applied topically five times per day for 14 days, or two subconjunctival injections, 50 μg scFv each, applied 7 days apart, or combined topical and subconjunctival treatment. Corneal vessel area was quantified on hematoxylin-stained corneal flat-mounts, and groups were compared using the Mann-Whitney U test, with post hoc Bonferroni correction. Immunohistochemistry for cleaved caspase-3 was performed. Results Topical anti-VEGF-B scFv therapy alone did not regress corneal blood vessels significantly (P > 0.05). Subconjunctival injection and combined treatment regressed 14-day established corneal blood vessels (25% reduction in vessel area [P = 0.04] and 37% reduction in vessel area [P < 0.001], respectively, compared to results in untreated controls). Cleaved caspase-3 was identified in vascular endothelial cells of anti-VEGF-B scFv-treated corneas. In scFv-treated rats, corneal endothelial cell function was maintained to 12 weeks after treatment and a normal blink reflex was present. Conclusions The anti-VEGF-B scFv significantly regressed established but not developing corneal blood vessels in rats.


Journal of Immunological Methods | 2013

Co-expression of a scFv antibody fragment and a reporter protein using lentiviral shuttle plasmid containing a self-processing furin-2A sequence.

Sarah Louise Appleby; Yazad Irani; Lauren A. Mortimer; Helen M. Brereton; Sonja Klebe; Miriam Claire Keane; Peter J. Cowan; Keryn Anne Williams

It is often desirable to co-express a reporter protein with a potential therapeutic protein, to verify correct targeting of an expression strategy. Vectors containing a viral self-processing 2A sequence have been reported to drive equimolar expression of two or more transgenes from a single promoter. Here, we report on the co-expression of a secreted antibody fragment and an intracellular reporter protein, enhanced yellow fluorescent protein from lentiviral shuttle plasmids by inserting a furin-2A (F2A) sequence between the two cDNAs, in two different orientations, in the expression cassette. We show that the order of these two transgenes relative to the F2A sequence affects expression levels. Reduced expression of each transgene positioned downstream of F2A, compared with upstream of F2A, was observed (p<0.05). Moreover, protein expression from double-cDNA plasmids was significantly lower than from their corresponding single transgene counterparts (p<0.05).


Asia-Pacific journal of ophthalmology | 2016

Gene Therapy and Gene Editing for the Corneal Dystrophies.

Keryn Anne Williams; Yazad Irani

AbstractDespite ever-increasing understanding of the genetic underpinnings of many corneal dystrophies, gene therapy designed to ameliorate disease has not yet been reported in any human patient. In this review, we explore the likely reasons for this apparent failure of translation. We identify the requirements for success: the genetic defect involved must have been identified and mapped, vision in the affected patient must be significantly impaired or likely to be impaired, no better or equivalently effective treatment must be available, the treatment must be capable of modulating corneal pathology, and delivery of the construct to the appropriate cell must be practicable. We consider which of the corneal dystrophies might be amenable to treatment by genetic manipulations, summarize existing therapeutic options for treatment, and explore gene editing using clustered regularly interspaced short palindromic repeat/Cas and other similar transformative technologies as the way of the future. We then summarize recent laboratory-based advances in gene delivery and the development of in vitro and in vivo models of the corneal dystrophies. Finally, we review recent experimental work that has increased our knowledge of the pathobiology of these conditions.


Current Eye Research | 2017

Interleukin-10 Gene Transfer in Rat Limbal Transplantation

Claude Kaufmann; Lauren A. Mortimer; Helen M. Brereton; Yazad Irani; Douglas G Parker; Donald S. Anson; Lucas M. Bachmann; Keryn Anne Williams

ABSTRACT Purpose: To evaluate the gene transfer of the interleukin (IL)-10 cytokine as a treatment modality for prolonging limbal allograft survival in a rat model. Materials and methods: Adenoviral (AV) and lentiviral (LV) vectors were produced for ex vivo gene transfer into limbal graft tissue prior to orthotopic transplantation. Experimental groups comprised unmodified isografts, unmodified allografts, allografts transfected with a reporter gene, and allografts transfected with IL-10. The functional effects of the transgenes were determined by clinical assessment and by following donor cell survival in the recipient animal. Group comparisons were made using survival analysis and tested with the log-rank test. Differences in mean rejection times between groups were tested using the Wilcoxon rank-sum test. Results: Isografts survived during the entire observation period of 56 days. Allografts underwent clinical rejection at a mean of 6.7 days (standard deviation 2.0) postoperatively, irrespective of the presence of transgenes (p < 0.001 for difference in rejection times). For both the AV and LV vector systems, Kaplan–Meier analysis showed a statistically significant difference with respect to time-to-graft failure when comparing allografts transfected with IL-10 with allografts transfected with reporter gene alone (p = 0.011 and p < 0.001, respectively). In the isografts, donor cells could be detected during the complete observation period. In all the allograft groups, however, donor cell detection declined after 1 week and was lost after 4 weeks. Conclusions: Under the conditions tested in the present model, both the AV and the LV vector systems were able to transfect limbal graft tissue ex vivo with biologically active IL-10, leading to delayed rejection compared to the controls.

Collaboration


Dive into the Yazad Irani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J. P. McInnes

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge