Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ye Xue is active.

Publication


Featured researches published by Ye Xue.


ACS Applied Materials & Interfaces | 2017

BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications

Yuanpeng Wu; Ye Xue; Si Qin; Dan Liu; Xuebin Wang; Xiao Hu; Jingliang Li; Xungai Wang; Yoshio Bando; Dmitri Golberg; Ying Chen; Yury Gogotsi; Weiwei Lei

The development of advanced thermal transport materials is a global challenge. Two-dimensional nanomaterials have been demonstrated as promising candidates for thermal management applications. Here, we report a boron nitride (BN) nanosheet/polymer composite film with excellent flexibility and toughness prepared by vacuum-assisted filtration. The mechanical performance of the composite film is highly flexible and robust. It is noteworthy that the film exhibits highly anisotropic properties, with superior in-plane thermal conductivity of around 200 W m-1 K-1 and extremely low through-plane thermal conductivity of 1.0 W m-1 K-1, making this material an excellent candidate for thermal management in electronics. Importantly, the composite film shows fire-resistant properties. The newly developed unconventional flexible, tough, and refractory BN films are also promising for heat dissipation in a variety of applications.


Journal of Materials Chemistry C | 2018

Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management

Jiemin Wang; Yuanpeng Wu; Ye Xue; Dan Liu; Xuebin Wang; Xiao Hu; Yoshio Bando; Weiwei Lei

High heat-dissipation polymers are currently in great demand especially with the rapid development of electronic devices. However, traditional polymer composites usually suffer from both low thermal conductivity due to poor dispersibility and low concentration of fillers in the polymer matrix. To address this issue, it is necessary to improve the compatibility between the thermal conductive fillers and polymer matrix. Here, we designed a highly water-soluble functionalized boron nitride (FBN) nanosheet. Unlike most functional BN nanosheets that are only dispersible in water with polymer matrix at low concentrations, our FBN nanosheets can be mutually dispersed with aqueous polymers such as polyvinyl alcohol (PVA) in arbitrary weight ratios. The super compatibility between FBN and PVA is further interpreted by the Pickering emulsion formed from water and n-hexane. Moreover, after facile vacuum filtration, the robust FBN/polymer freestanding films with layer-by-layer laminate nanostructures are well fabricated. The nanocomposite films exhibit superior in-plane thermal conductivity (120 W m−1 K−1 for 90 wt% FBN loading in FBN/PVA film), which is nearly 100 times larger than that of the pristine PVA film. The FBN/polymer films provide good fire-retardant ability, thus effectively retarding flammability. In addition, the nanocomposite film with high concentration of FBN up to 70 wt% still possessed excellent flexibility and toughness even after being rolled and folded 100 times. Interestingly, the rolled film hollow cylinder supported 25 000 times its own weight without cracking, highlighting the extra strong interaction between the FBN and PVA. These properties make the nanosheet an excellent candidate for thermal management in electronics.


Cellulose | 2017

Structure-property relationships of blended polysaccharide and protein biomaterials in ionic liquid

John Stanton; Ye Xue; Joshua C. Waters; Ashley Lewis; Darrel Cowan; Xiao Hu; David Salas-de la Cruz

Cellulose and silk blended biomaterial films were regenerated from ionic liquid solution and investigated to characterize and understand the effect of inter- and intra-molecular interactions upon the morphology and thermal properties. The blended films were dissolved in 1-allyl-3-methylimidazolium chloride ionic liquid, coagulated and regenerated with water. Various characterization techniques were implemented to characterize structural, morphological and thermal properties: FTIR, SEM, TGA, DSC and X-ray scattering. The results showed that the cellulose microcrystalline structure and β-sheets from the silk can be disrupted by inter- and intra-molecular hydrogen bonds forming intermediate semicrystalline or amorphous structures. The SEM showed morphological effects of such interactions that cause varying thermal degradation and glass transition temperature. The X-ray scattering confirms such findings at the molecular level, demonstrating that the cellulose microfibril diameter decreases as the silk content increases. It also shows that the β-sheets size increases as the cellulose content increases. These various techniques provide evidence that suggest the hydrogen bonds between the β-sheets and the glucose units in the cellulose chains control the thermal and structural properties of the blended films, changing the morphology and physicochemical properties.


International Journal of Molecular Sciences | 2016

Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials

Trang Vu; Ye Xue; Trinh Vuong; Matthew Erbe; Christopher Bennet; Ben Palazzo; Lucas Popielski; Nelson Rodriguez; Xiao Hu

This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt %) for the first group (ultrasonication), and 10 wt % for the second group (natural gel). Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the samples’ characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications, thanks to the good biocompatibility of protein molecules and the various characteristics of hydrogel systems.


Materials | 2017

Protein-Based Drug-Delivery Materials

Dave Jao; Ye Xue; Jethro Medina; Xiao Hu

There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review.


International Journal of Biological Macromolecules | 2017

Structure–property relationships of Thai silk–microcrystalline cellulose biocomposite materials fabricated from ionic liquid

Kelsey G. DeFrates; Theodore Markiewicz; Kayla Callaway; Ye Xue; John Stanton; David Salas-de la Cruz; Xiao Hu

Biomaterials made from natural proteins and polysaccharides have become increasingly popular in the biomedical field due to their good biocompatibility and tunable biodegradability. However, the low miscibility of polysaccharides with proteins presents challenges in the creation of protein-polysaccharide composite materials. In this study, neat 1-allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid was used to regenerate Thailand gold Bombyx mori silk and microcrystalline cellulose blended films. This solvent was found to not only effectively dissolve both natural polymers, but also preserve the structure and integrity of the polymers. A single glass transition temperature for each blend was found in DSC curves, indicating good miscibility between the Thai silk and cellulose molecules. The structural composition as well as the morphology and thermal stability of blend films were then determined using FTIR, SEM and TGA. It was found that by varying the ratio of Thai silk to cellulose, the thermal and physical properties of the material could be tuned. Blended films tended to be more thermally stable which could be due to the presence of hydrophobic-hydrophobic or electrostatic interactions between the silk and cellulose. These studies offered a new pathway to understand the tunable properties of protein-polysaccharide composite biomaterials with controllable physical and biological properties.


International Journal of Biological Macromolecules | 2018

Impact of ionic liquid type on the structure, morphology and properties of silk-cellulose biocomposite materials

John Stanton; Ye Xue; Prabhdeep Pandher; Laura Malek; Tyler Brown; Xiao Hu; David Salas-de la Cruz

Microcrystalline cellulose and Bombyx mori silk blended biocomposite films were regenerated using various imidazolium-based ionic liquids. The films were characterized to understand the effect of the inter- and intra-molecular interactions upon the morphology and thermal properties. Various techniques were implemented to investigate structural, morphological and thermal properties of the biocomposite films, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray scattering. Results show that the type of ionic liquid has strong influence on the structure of silk-cellulose composites that can form either amorphous or semicrystalline structures. While the thermal properties are independent of the type of cation in ionic liquids, the levels of β-sheet configuration are dependent on the type of anion, which further causes changes on the biocomposite thermal properties. The topological image provided information to support morphological effects on the varying ionic liquids and X-ray scattering allowed for insight on the role of ionic liquids on the crystallinity and the spacing differences in biocomposite films. The results have demonstrated that there is a direct relationship between the intermolecular interactions in films and the anion structure of the ionic liquids.


Polymers | 2017

Biocompatible Silk/Polymer Energy Harvesters Using Stretched Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) Nanofibers

Raghid Najjar; Yi Luo; Dave Jao; David Brennan; Ye Xue; Vince Beachley; Xiao Hu; Wei Xue

Energy harvested from human body movement can produce continuous, stable energy to portable electronics and implanted medical devices. The energy harvesters need to be light, small, inexpensive, and highly portable. Here we report a novel biocompatible device made of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers on flexible substrates. The nanofibers are prepared with electrospinning followed by a stretching process. This results in aligned nanofibers with diameter control. The assembled device demonstrates high mechanical-to-electrical conversion performance, with stretched PVDF-HFP nanofibers outperforming regular electrospun samples by more than 10 times. Fourier transform infrared spectroscopy (FTIR) reveals that the stretched nanofibers have a higher β phase content, which is the critical polymorph that enables piezoelectricity in polyvinylidene fluoride (PVDF). Polydimethylsiloxane (PDMS) is initially selected as the substrate material for its low cost, high flexibility, and rapid prototyping capability. Bombyx Mori silkworm silk fibroin (SF) and its composites are investigated as promising alternatives due to their high strength, toughness, and biocompatibility. A composite of silk with 20% glycerol demonstrates higher strength and larger ultimate strain than PDMS. With the integration of stretched electrospun PVDF-HFP nanofibers and flexible substrates, this pilot study shows a new pathway for the fabrication of biocompatible, skin-mountable energy devices.


Polymers | 2018

Comparative Investigation of Thermal and Structural Behavior in Renewably Sourced Composite Films of Even-Even Nylons (610 and 1010) with Silk Fibroin

Kayla Callaway; Ye Xue; Vincent Altimari; Guoxiang Jiang; Xiao Hu

As the average life expectancy continues to increase, so does the need for resorbable materials designed to treat, augment, or replace components and functions of the body. Naturally occurring biopolymers such as silks are already attractive candidates due to natural abundance and high biocompatibility accompanied by physical properties which are easily modulated through blending with another polymer. In this paper, the authors report on the fabrication of biocomposite materials made from binary blends of Bombyx mori silk fibroin (SF) protein and renewably sourced low molecular weight nylon 610 and high molecular weight nylon 1010. Films were characterized using scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Results of this study demonstrated that enhanced structural and thermal properties were achievable in composite films SF-N610/N1010 due to their chemical similarity and the possible formation of hydrogen bonds between nylon and silk molecular chains. This study provides useful insight into the sustainable design of functional composite materials for biomedical and green technologies.


Science & Engineering Faculty | 2017

Improved Li+ Storage through Homogeneous N-Doping within Highly Branched Tubular Graphitic Foam

Jinyang Dong; Ye Xue; Chao Zhang; Qunhong Weng; Pengcheng Dai; Yijun Yang; Min Zhou; Cuncheng Li; Qiuhong Cui; Xiaohong Kang; C. Tang; Yoshio Bando; Dmitri Golberg; X. Wang

Collaboration


Dive into the Ye Xue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitri Golberg

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Xue

Washington State University Vancouver

View shared research outputs
Top Co-Authors

Avatar

Chao Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuanpeng Wu

Southwest Petroleum University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge