Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yee-Foong Mok is active.

Publication


Featured researches published by Yee-Foong Mok.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Superheating of ice crystals in antifreeze protein solutions

Yeliz Celik; Laurie A. Graham; Yee-Foong Mok; Maya Bar; Peter L. Davies; Ido Braslavsky

It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hours above their equilibrium melting point, and the maximum superheating obtained was 0.44 °C. When melting commenced in this superheated regime, rapid melting of the crystals from a point on the surface was observed. This increase in melting temperature was more appreciable for hyperactive AFPs compared to the AFPs with moderate antifreeze activity. For each of the AFP solutions that exhibited superheating, the enhancement of the melting temperature was far smaller than the depression of the freezing temperature. The present findings clearly show that AFPs adsorb to ice surfaces as part of their mechanism of action, and this absorption leads to protection of ice against melting as well as freezing.


Methods in Enzymology | 2006

Sedimentation Velocity Analysis of Amyloid Oligomers and Fibrils

Yee-Foong Mok; Geoffrey J. Howlett

The different aggregation states of amyloid oligomers and fibrils have been associated with distinct biological properties and disease pathologies. These various amyloid species are distinguished by their different molecular weights and sedimentation coefficients and can be consistently resolved, separated, and analyzed using sedimentation velocity techniques. We first describe the theoretical background and use of the preparative ultracentrifuge to separate amyloid fibrils and their oligomeric intermediates from monomeric subunits as well as the factors and limits involved in such methods. The approach can be used to monitor the kinetics of fibril formation as well as providing purified fractions for functional analysis. Secondly, we describe the use of analytical ultracentrifugation as a precise and robust system for monitoring the rate of sedimentation of amyloid fibrils under different solution conditions. Sedimentation velocity procedures to characterize the size, interactions, and tangling of amyloid fibrils as well as the binding of nonfibrillar components to form heterologous complexes are detailed.


Biochemistry | 2010

Structural Basis for the Superior Activity of the Large Isoform of Snow Flea Antifreeze Protein

Yee-Foong Mok; Feng-Hsu Lin; Laurie A. Graham; Yeliz Celik; Ido Braslavsky; Peter L. Davies

The snow flea (Hypogastrum harveyi) is protected from freezing at sub-zero temperatures by a glycine-rich antifreeze protein (AFP) that binds to seed ice crystals and prevents them from growing larger. This AFP is hyperactive and comprises two isoforms [Graham, L. A., and Davies, P. L. (2005) Science 310, 461]. The larger isoform (15.7 kDa) exhibits several-fold higher activity than the smaller isoform (6.5 kDa), although it is considerably less abundant. To establish the molecular basis for this difference in activity, we determined the sequence of the large isoform. The primary sequences of these two isoforms are surprisingly divergent. However, both contain tripeptide repeats and turn motifs that enabled us to build a three-dimensional model of the large isoform based upon the six-polyproline helix structure of the small isoform. Our model contains 13 polyproline type II helices connected by proline-containing loops stacked into two flat sheets oriented antiparallel to one another. The structure is strictly amphipathic, with a hydrophilic surface on one side and a hydrophobic, putative ice-binding surface on the other. The putative ice-binding site is approximately twice as large in area as that of the small isoform, providing an explanation for the difference in activity that is consistent with other examples noted. By tagging the recombinant AFP with green fluorescent protein, we observed its binding to multiple planes of ice, especially the basal plane. This finding supports the correlation between AFP hyperactivity and basal plane binding first observed with spruce budworm AFP.


Journal of Molecular Biology | 2010

Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1

Wai Yee Low; Susanne C. Feil; Hooi Ling Ng; Michael A. Gorman; Craig J. Morton; James S. Pyke; Malcolm J. McConville; Michael Bieri; Yee-Foong Mok; Charles Robin; Paul R. Gooley; Michael W. Parker; Philip Batterham

GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 A resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional (1)H,(15)N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.


Journal of Biological Chemistry | 2014

Misfolded polyglutamine, polyalanine, and superoxide dismutase 1 aggregate via distinct pathways in the cell

Saskia Polling; Yee-Foong Mok; Yasmin M. Ramdzan; Bradley J. Turner; Justin J. Yerbury; Andrew F. Hill; Danny M. Hatters

Background: Protein aggregation is associated with neurodegenerative diseases. Results: We defined how the oligomeric state of disease-relevant mutant protein and homopolypeptides relate to clustering into inclusion subtypes IPOD and JUNQ. Conclusion: JUNQ protein and homopolypeptides relate to constitutively disrupted oligomeric states irrespective of inclusion formation. Significance: JUNQ inclusions may arise by cellular failure in degradation of abnormal oligomeric states. Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate self-aggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion subtypes, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis. Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis (PulSA) to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the nonaggregating forms, regardless of whether cells had inclusions or not, whereas 72Q was almost exclusively monomeric until inclusions formed. We propose that mutations leading to JUNQ inclusions induce a constitutively “misfolded” state exposing hydrophobic side chains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. Poly(Q) is not misfolded in this same sense due to universal polar side chains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control.


Methods | 2011

Sedimentation velocity analysis of amyloid oligomers and fibrils using fluorescence detection.

Yee-Foong Mok; Timothy M. Ryan; Shuo Yang; Danny M. Hatters; Geoffrey J. Howlett; Michael D. W. Griffin

The assembly of proteins into large fibrillar aggregates, known as amyloid fibrils, is associated with a number of common and debilitating diseases. In some cases, proteins deposit extracellularly, while in others the aggregation is intracellular. A common feature of these diseases is the presence of aggregates of different sizes, including mature fibrils, small oligomeric precursors, and other less well understood structural forms such as amorphous aggregates. These various species possess distinct biochemical, biophysical, and pathological properties. Here, we detail a number of techniques that can be employed to examine amyloid fibrils and oligomers using a fluorescence-detection system (FDS) coupled with the analytical ultracentrifuge. Sedimentation velocity analysis using fluorescence detection is a particularly useful method for resolving the complex heterogeneity present in amyloid systems and can be used to characterize aggregation in exceptional detail. Furthermore, the fluorescence detection module provides a number of particularly attractive features for the analysis of aggregating proteins. It expands the practical range of concentrations of aggregating proteins under study, which is useful for greater insight into the aggregation process. It also enables the assessment of aggregation behavior in complex biological solutions, such as cell lysates, and the assessment of processes that regulate in-cell or extracellular aggregation kinetics. Four methods of fluorescent detection that are compatible with the current generation of FDS instrumentation are described: (1) Detection of soluble amyloid fibrils using a covalently bound fluorophore. (2) Detection of amyloid fibrils using an extrinsic dye that emits fluorescence when bound to fibrils. (3) Detection of fluorescently-labeled lipids and their interaction with oligomeric amyloid intermediates. (4) Detection of green fluorescence protein (GFP) constructs and their interactions within mammalian cell lysates.


Journal of Biological Chemistry | 2013

A Platform to View Huntingtin Exon 1 Aggregation Flux in the Cell Reveals Divergent Influences from Chaperones hsp40 and hsp70

Angelique R. Ormsby; Yasmin M. Ramdzan; Yee-Foong Mok; Kristijan D. Jovanoski; Danny M. Hatters

Background: How misfolded proteins such as mutant huntingtin aggregate in the cell remains enigmatic. Results: We built a platform to view how aggregation proceeds and assessed the impact of quality control chaperones hsp40 and hsp70. Conclusion: hsp70 enhanced survival of cells with aggregates; hsp40 suppressed aggregation. Significance: We developed a new toolkit to illustrate the impact of protein aggregation on cell biology. Our capacity for tracking how misfolded proteins aggregate inside a cell and how different aggregation states impact cell biology remains enigmatic. To address this, we built a new toolkit that enabled the high throughput tracking of individual cells enriched with polyglutamine-expanded Htt exon 1 (Httex1) monomers, oligomers, and inclusions using biosensors of aggregation state and flow cytometry pulse shape analysis. Supplemented with gel filtration chromatography and fluorescence-adapted sedimentation velocity analysis of cell lysates, we collated a multidimensional view of Httex1 aggregation in cells with respect to time, polyglutamine length, expression levels, cell survival, and overexpression of protein quality control chaperones hsp40 (DNAJB1) and hsp70 (HSPA1A). Cell death rates trended higher for Neuro2a cells containing Httex1 in inclusions than with Httex1 dispersed through the cytosol at time points of expression over 2 days. hsp40 stabilized monomers and suppressed inclusion formation but did not otherwise change Httex1 toxicity. hsp70, however, had no major effect on aggregation of Httex1 but increased the survival rate of cells with inclusions. hsp40 and hsp70 also increased levels of a second bicistronic reporter of Httex1 expression, mKate2, and increased total numbers of cells in culture, suggesting these chaperones partly rectify Httex1-induced deficiencies in quality control and growth rates. Collectively, these data suggest that Httex1 overstretches the protein quality control resources and that the defects can be partly rescued by overexpression of hsp40 and hsp70. Importantly, these effects occurred in a pronounced manner for soluble Httex1, which points to Httex1 aggregation occurring subsequently to more acute impacts on the cell.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Structurally conserved erythrocyte-binding domain in Plasmodium provides a versatile scaffold for alternate receptor engagement.

Jakub Gruszczyk; Nicholas T. Y. Lim; Alicia Arnott; Wen-Qiang He; Wang Nguitragool; Wanlapa Roobsoong; Yee-Foong Mok; James M. Murphy; Katherine R. Smith; Stuart Lee; Melanie Bahlo; Ivo Mueller; Alyssa E. Barry; Wai-Hong Tham

Significance Plasmodium vivax is responsible for the most widely distributed recurring human malaria infections whereas Plasmodium falciparum inflicts the most mortality and morbidity in human populations. Malaria parasites enter our blood cells by making proteins that recognize and bind to their cognate receptors on the red blood cell surface. Our research describes, to our knowledge, the first crystal structure of PvRBP2a, an erythrocyte-binding protein from P. vivax, which revealed a structural scaffold similar to that of PfRh5, the essential erythrocyte-binding protein in P. falciparum. Structural comparisons between PvRBP2a and PfRh5 provide an important foundation toward understanding how P. vivax and P. falciparum parasites use a homologous erythrocyte-binding protein family to engage alternate erythrocyte receptors and ultimately govern host cell specificity. Understanding how malaria parasites gain entry into human red blood cells is essential for developing strategies to stop blood stage infection. Plasmodium vivax preferentially invades reticulocytes, which are immature red blood cells. The organism has two erythrocyte-binding protein families: namely, the Duffy-binding protein (PvDBP) and the reticulocyte-binding protein (PvRBP) families. Several members of the PvRBP family bind reticulocytes, specifically suggesting a role in mediating host cell selectivity of P. vivax. Here, we present, to our knowledge, the first high-resolution crystal structure of an erythrocyte-binding domain from PvRBP2a, solved at 2.12 Å resolution. The monomeric molecule consists of 10 α-helices and one short β-hairpin, and, although the structural fold is similar to that of PfRh5—the essential invasion ligand in Plasmodium falciparum—its surface properties are distinct and provide a possible mechanism for recognition of alternate receptors. Sequence alignments of the crystallized fragment of PvRBP2a with other PvRBPs highlight the conserved placement of disulfide bonds. PvRBP2a binds mature red blood cells through recognition of an erythrocyte receptor that is neuraminidase- and chymotrypsin-resistant but trypsin-sensitive. By examining the patterns of sequence diversity within field isolates, we have identified and mapped polymorphic residues to the PvRBP2a structure. Using mutagenesis, we have also defined the critical residues required for erythrocyte binding. Characterization of the structural features that govern functional erythrocyte binding for the PvRBP family provides a framework for generating new tools that block P. vivax blood stage infection.


Biophysical Journal | 2012

AMP-Activated Protein Kinase β-Subunit Requires Internal Motion for Optimal Carbohydrate Binding

Michael Bieri; Jesse I. Mobbs; Ann Koay; Gavin Louey; Yee-Foong Mok; Danny M. Hatters; Jong-Tae Park; Kwan Hwa Park; Dietbert Neumann; David Stapleton; Paul R. Gooley

AMP-activated protein kinase interacts with oligosaccharides and glycogen through the carbohydrate-binding module (CBM) containing the β-subunit, for which there are two isoforms (β(1) and β(2)). Muscle-specific β(2)-CBM, either as an isolated domain or in the intact enzyme, binds carbohydrates more tightly than the ubiquitous β(1)-CBM. Although residues that contact carbohydrate are strictly conserved, an additional threonine in a loop of β(2)-CBM is concurrent with an increase in flexibility in β(2)-CBM, which may account for the affinity differences between the two isoforms. In contrast to β(1)-CBM, unbound β(2)-CBM showed microsecond-to-millisecond motion at the base of a β-hairpin that contains residues that make critical contacts with carbohydrate. Upon binding to carbohydrate, similar microsecond-to-millisecond motion was observed in this β-hairpin and the loop that contains the threonine insertion. Deletion of the threonine from β(2)-CBM resulted in reduced carbohydrate affinity. Although motion was retained in the unbound state, a significant loss of motion was observed in the bound state of the β(2)-CBM mutant. Insertion of a threonine into the background of β(1)-CBM resulted in increased ligand affinity and flexibility in these loops when bound to carbohydrate. However, these mutations indicate that the additional threonine is not solely responsible for the differences in carbohydrate affinity and protein dynamics. Nevertheless, these results suggest that altered protein dynamics may contribute to differences in the ligand affinity of the two naturally occurring CBM isoforms.


Science | 2018

Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax.

Jakub Gruszczyk; Usheer Kanjee; Li-Jin Chan; Sébastien Menant; Benoit Malleret; Nicholas T. Y. Lim; Christoph Q. Schmidt; Yee-Foong Mok; Kai-Min Lin; Richard D. Pearson; Gabriel Rangel; Brian J. Smith; Melissa J. Call; Michael P. Weekes; Michael D. W. Griffin; James M. Murphy; Jonathan Abraham; Kanlaya Sriprawat; Maria José Menezes; Marcelo U. Ferreira; Bruce Russell; Laurent Rénia; Manoj T. Duraisingh; Wai-Hong Tham

Vivax malaria host receptor Human malaria is caused by half a dozen species of Plasmodium protozoan parasites, each with distinctive biology. P. vivax, which causes relapsing malaria, specifically parasitizes immature red blood cells called reticulocytes. Gruszczyk et al. identified TfR1 (host transferrin receptor 1) as an alternative receptor for P. vivax. TfR1 binds to a specific P. vivax surface protein. However, the parasite that causes cerebral malaria, P. falciparum, does not share TfR1 as a receptor: P. falciparum could still infect cells in which TfR1 expression was knocked down, but P. vivax could not. Monoclonal antibodies to the P. vivax protein successfully hindered P. vivax infection of red blood cells. Science, this issue p. 48 Invasion of immature red blood cells by the malaria parasite Plasmodium vivax is mediated by binding to the host’s transferrin receptor. Plasmodium vivax shows a strict host tropism for reticulocytes. We identified transferrin receptor 1 (TfR1) as the receptor for P. vivax reticulocyte-binding protein 2b (PvRBP2b). We determined the structure of the N-terminal domain of PvRBP2b involved in red blood cell binding, elucidating the molecular basis for TfR1 recognition. We validated TfR1 as the biological target of PvRBP2b engagement by means of TfR1 expression knockdown analysis. TfR1 mutant cells deficient in PvRBP2b binding were refractory to invasion of P. vivax but not to invasion of P. falciparum. Using Brazilian and Thai clinical isolates, we show that PvRBP2b monoclonal antibodies that inhibit reticulocyte binding also block P. vivax entry into reticulocytes. These data show that TfR1-PvRBP2b invasion pathway is critical for the recognition of reticulocytes during P. vivax invasion.

Collaboration


Dive into the Yee-Foong Mok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakub Gruszczyk

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wai-Hong Tham

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge