Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yee-Joo Tan is active.

Publication


Featured researches published by Yee-Joo Tan.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Protein folding from a highly disordered denatured state: The folding pathway of chymotrypsin inhibitor 2 at atomic resolution

Steven L. Kazmirski; Kam Bo Wong; Stefan M. V. Freund; Yee-Joo Tan; Alan R. Fersht; Valerie Daggett

Previous experimental and theoretical studies have produced high-resolution descriptions of the native and folding transition states of chymotrypsin inhibitor 2 (CI2). In similar fashion, here we use a combination of NMR experiments and molecular dynamics simulations to examine the conformations populated by CI2 in the denatured state. The denatured state is highly unfolded, but there is some residual native helical structure along with hydrophobic clustering in the center of the chain. The lack of persistent nonnative structure in the denatured state reduces barriers that must be overcome, leading to fast folding through a nucleation–condensation mechanism. With the characterization of the denatured state, we have now completed our description of the folding/unfolding pathway of CI2 at atomic resolution.


Journal of Virology | 2004

Overexpression of 7a, a Protein Specifically Encoded by the Severe Acute Respiratory Syndrome Coronavirus, Induces Apoptosis via a Caspase-Dependent Pathway

Yee-Joo Tan; Burtram C. Fielding; Phuay-Yee Goh; Shuo Shen; Timothy H. P. Tan; Seng Gee Lim; Wanjin Hong

ABSTRACT Besides genes that are homologous to proteins found in other coronaviruses, the severe acute respiratory syndrome coronavirus genome also contains nine other potential open reading frames. Previously, we have characterized the expression and cellular localization of two of these “accessory” viral proteins, 3a (previously termed U274) and 7a (previously termed U122). In this study, we further examined whether they can induce apoptosis, which has been observed clinically. We showed that the overexpression of 7a, but not of 3a or the viral structural proteins, nucleocapsid, membrane, and envelope, induces apoptosis. 7a induces apoptosis via a caspase-dependent pathway and in cell lines derived from different organs, including lung, kidney, and liver.


Journal of Virology | 2004

A Novel Severe Acute Respiratory Syndrome Coronavirus Protein, U274, Is Transported to the Cell Surface and Undergoes Endocytosis

Yee-Joo Tan; Eileen Teng; Shuo Shen; Timothy H. P. Tan; Phuay-Yee Goh; Burtram C. Fielding; Eng Eong Ooi; Hwee-Cheng Tan; Seng Gee Lim; Wanjin Hong

ABSTRACT The severe acute respiratory syndrome coronavirus (SARS-CoV) genome contains open reading frames (ORFs) that encode for several genes that are homologous to proteins found in all known coronaviruses. These are the replicase gene 1a/1b and the four structural proteins, nucleocapsid (N), spike (S), membrane (M), and envelope (E), and these proteins are expected to be essential for the replication of the virus. In addition, this genome also contains nine other potential ORFs varying in length from 39 to 274 amino acids. The largest among these is the first ORF of the second longest subgenomic RNA, and this protein (termed U274 in the present study) consists of 274 amino acids and contains three putative transmembrane domains. Using antibody specific for the C terminus of U274, we show U274 to be expressed in SARS-CoV-infected Vero E6 cells and, in addition to the full-length protein, two other processed forms were also detected. By indirect immunofluorescence, U274 was localized to the perinuclear region, as well as to the plasma membrane, in both transfected and infected cells. Using an N terminus myc-tagged U274, the topology of U274 and its expression on the cell surface were confirmed. Deletion of a cytoplasmic domain of U274, which contains Yxxφ and diacidic motifs, abolished its transport to the cell surface. In addition, U274 expressed on the cell surface can internalize antibodies from the culture medium into the cells. Coimmunoprecipitation experiments also showed that U274 could interact specifically with the M, E, and S structural proteins, as well as with U122, another protein that is unique to SARS-CoV.


Journal of Virology | 2004

Cellular RNA Helicase p68 Relocalization and Interaction with the Hepatitis C Virus (HCV) NS5B Protein and the Potential Role of p68 in HCV RNA Replication

Phuay-Yee Goh; Yee-Joo Tan; Siew Pheng Lim; Yin Hwee Tan; Seng Gee Lim; Frances Fuller-Pace; Wanjin Hong

ABSTRACT Chronic infection by hepatitis C virus (HCV) can lead to severe hepatitis and cirrhosis and is closely associated with hepatocellular carcinoma. The replication cycle of HCV is poorly understood but is likely to involve interaction with host factors. In this report, we show that NS5B, the HCV RNA-dependent RNA polymerase (RdRp), interacts with a human RNA helicase, p68. Transient expression of NS5B alone, as well as the stable expression of all the nonstructural proteins in a HCV replicon-bearing cell line (V. Lohmann, F. Korner, J.-O. Koch, U. Herian, L. Theilmann, and R. Bartenschlager, Science 285:110-113), causes the redistribution of endogenous p68 from the nucleus to the cytoplasm. Deletion of the C-terminal two-thirds of NS5B (NS5BΔC) dramatically reduces its coimmunoprecipitation (co-IP) with endogenous p68, while the deletion of the N-terminal region (NS5BΔN1 and NS5BΔN2) does not affect its interaction with p68. In consistency with the co-IP results, NS5BΔC does not cause the relocalization of p68 whereas NS5BΔN1 does. With a replicon cell line, we were not able to detect a change in positive- and negative-strand synthesis when p68 levels were reduced using small interfering RNA (siRNA). In cells transiently transfected with a full-length HCV construct, however, the depletion (using specific p68 siRNA) of endogenous p68 correlated with a reduction in the transcription of negative-strand from positive-strand HCV RNA. Overexpression of NS5B and NS5BΔN1, but not that of NS5BΔC, causes a reduction in the negative-strand synthesis, indicating that overexpressed NS5B and NS5BΔN1 sequesters p68 from the replication complexes (thus reducing their replication activity levels). Identification of p68 as a cellular factor involved in HCV replication, at least for cells transiently transfected with a HCV expression construct, is a step towards understanding HCV replication.


Clinical and Vaccine Immunology | 2004

Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers

Yee-Joo Tan; Phuay-Yee Goh; Burtram C. Fielding; Shuo Shen; Chih-Fong Chou; Jianlin Fu; Hoe Nam Leong; Yee Sin Leo; Eng Eong Ooi; Ai Ee Ling; Seng Gee Lim; Wanjin Hong

ABSTRACT A new coronavirus (severe acute respiratory syndrome coronavirus [SARS-CoV]) has been identified to be the etiological agent of severe acute respiratory syndrome. Given the highly contagious and acute nature of the disease, there is an urgent need for the development of diagnostic assays that can detect SARS-CoV infection. For determination of which of the viral proteins encoded by the SARS-CoV genome may be exploited as diagnostic antigens for serological assays, the viral proteins were expressed individually in mammalian and/or bacterial cells and tested for reactivity with sera from SARS-CoV-infected patients by Western blot analysis. A total of 81 sera, including 67 from convalescent patients and seven pairs from two time points of infection, were analyzed, and all showed immunoreactivity towards the nucleocapsid protein (N). Sera from some of the patients also showed immunoreactivity to U274 (59 of 81 [73%]), a protein that is unique to SARS-CoV. In addition, all of the convalescent-phase sera showed immunoreactivity to the spike (S) protein when analyzed by an immunofluorescence method utilizing mammalian cells stably expressing S. However, samples from the acute phase (2 to 9 days after the onset of illness) did not react with S, suggesting that antibodies to N may appear earlier than antibodies to S. Alternatively, this could be due to the difference in the sensitivities of the two methods. The immunoreactivities to these recombinant viral proteins are highly specific, as sera from 100 healthy donors did not react with any of them. These results suggest that recombinant N, S, and U274 proteins may be used as antigens for the development of serological assays for SARS-CoV.


Biochemical and Biophysical Research Communications | 2005

The severe acute respiratory syndrome coronavirus 3a is a novel structural protein.

Shuo Shen; Pi-Shiu Lin; Yu-Chan Chao; Aihua Zhang; Xiaoming Yang; Seng Gee Lim; Wanjin Hong; Yee-Joo Tan

Abstract The severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is one of the opening reading frames in the viral genome with no homologue in other known coronaviruses. Expression of the 3a protein has been demonstrated during both in vitro and in vivo infection. Here we present biochemical data to show that 3a is a novel coronavirus structural protein. 3a was detected in virions purified from SARS-CoV infected Vero E6 cells although two truncated products were present predominantly instead of the full-length protein. In Vero E6 cells transiently transfected with a cDNA construct for expressing 3a, a similar cleavage was observed. Furthermore, co-expression of 3a, membrane and envelope proteins using the baculovirus system showed that both full-length and truncated 3a can be assembled into virus-like particles. This is the first report that demonstrated the incorporation of 3a into virion and showed that the SARS-CoV encodes a novel coronavirus structural protein.


Journal of Virology | 2010

An Antibody against a Novel and Conserved Epitope in the Hemagglutinin 1 Subunit Neutralizes Numerous H5N1 Influenza Viruses

Hsueh-Ling Janice Oh; Sara Åkerström; Shuo Shen; Sándor Bereczky; Helen Karlberg; Jonas Klingström; Sunil K. Lal; Ali Mirazimi; Yee-Joo Tan

ABSTRACT The spread of the recently emerged, highly pathogenic H5N1 avian influenza virus has raised concern. Preclinical studies suggest that passive immunotherapy could be a new form of treatment for H5N1 virus infection. Here, a neutralizing monoclonal antibody (MAb) against the hemagglutinin (HA) of the influenza A/chicken/Hatay/2004 H5N1 virus, MAb 9F4, was generated and characterized. MAb 9F4 binds both the denatured and native forms of HA. It was shown to recognize the HA proteins of three heterologous strains of H5N1 viruses belonging to clades 1, 2.1, and 2.2, respectively. By use of lentiviral pseudotyped particles carrying HA on the surface, MAb 9F4 was shown to effectively neutralize the homologous strain, Hatay04, and another clade 1 strain, VN04, at a neutralization titer of 8 ng/ml. Furthermore, MAb 9F4 also neutralized two clade 2 viruses at a neutralizing titer of 40 ng/ml. The broad cross-neutralizing activity of MAb 9F4 was confirmed by its ability to neutralize live H5N1 viruses of clade 2.2.2. Epitope-mapping analysis revealed that MAb 9F4 binds a previously uncharacterized epitope below the globular head of the HA1 subunit. Consistently, this epitope is well conserved among the different clades of H5N1 viruses. MAb 9F4 does not block the interaction between HA and its receptor but prevents the pH-mediated conformational change of HA. MAb 9F4 was also found to be protective, both prophylactically and therapeutically, against a lethal viral challenge of mice. Taken together, our results showed that MAb 9F4 is a neutralizing MAb that binds a novel and well-conserved epitope in the HA1 subunit of H5N1 viruses.


Journal of Virology | 2005

Amino Acids 1055 to 1192 in the S2 Region of Severe Acute Respiratory Syndrome Coronavirus S Protein Induce Neutralizing Antibodies: Implications for the Development of Vaccines and Antiviral Agents

Choong-Tat Keng; Aihua Zhang; Shuo Shen; Kuo-Ming Lip; Burtram C. Fielding; Timothy H. P. Tan; Chih-Fong Chou; Chay Boon Loh; Sifang Wang; Jianlin Fu; Xiaoming Yang; Seng Gee Lim; Wanjin Hong; Yee-Joo Tan

ABSTRACT The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SΔ10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.


Journal of Virology | 2004

Characterization of a Unique Group-Specific Protein (U122) of the Severe Acute Respiratory Syndrome Coronavirus

Burtram C. Fielding; Yee-Joo Tan; Shen Shuo; Timothy H. P. Tan; Eng Eong Ooi; Seng Gee Lim; Wanjin Hong; Phuay-Yee Goh

ABSTRACT A novel coronavirus (CoV) has been identified as the etiological agent of severe acute respiratory syndrome (SARS). The SARS-CoV genome encodes the characteristic essential CoV replication and structural proteins. Additionally, the genome contains six group-specific open reading frames (ORFs) larger than 50 amino acids, with no known homologues. As with the group-specific genes of the other CoVs, little is known about the SARS-CoV group-specific genes. SARS-CoV ORF7a encodes a putative unique 122-amino-acid protein, designated U122 in this study. The deduced sequence contains a probable cleaved signal sequence and a C-terminal transmembrane helix, indicating that U122 is likely to be a type I membrane protein. The C-terminal tail also contains a typical endoplasmic reticulum (ER) retrieval motif, KRKTE. U122 was expressed in SARS-CoV-infected Vero E6 cells, as it could be detected by Western blot and immunofluorescence analyses. U122 is localized to the perinuclear region of both SARS-CoV-infected and transfected cells and colocalized with ER and intermediate compartment markers. Mutational analyses showed that both the signal peptide sequence and ER retrieval motif were functional.


Journal of Virology | 2012

Structure of Crimean-Congo Hemorrhagic Fever Virus Nucleoprotein: Superhelical Homo-Oligomers and the Role of Caspase-3 Cleavage

Yi Wang; Sujit Dutta; Helen Karlberg; Stéphanie Devignot; Friedemann Weber; Quan Hao; Yee-Joo Tan; Ali Mirazimi; Masayo Kotaka

ABSTRACT Crimean-Congo hemorrhagic fever, a severe hemorrhagic disease found throughout Africa, Europe, and Asia, is caused by the tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Nairovirus genus of the Bunyaviridae family. Its genome of three single-stranded RNA segments is encapsidated by the nucleocapsid protein (CCHFV N) to form the ribonucleoprotein complex. This ribonucleoprotein complex is required during replication and transcription of the viral genomic RNA. Here, we present the crystal structures of the CCHFV N in two distinct forms, an oligomeric form comprised of double antiparallel superhelices and a monomeric form. The head-to-tail interaction of the stalk region of one CCHFV N subunit with the base of the globular body of the adjacent subunit stabilizes the helical organization of the oligomeric form of CCHFV N. It also masks the conserved caspase-3 cleavage site present at the tip of the stalk region from host cell caspase-3 interaction and cleavage. By incubation with primer-length ssRNAs, we also obtained the crystal structure of CCHFV N in its monomeric form, which is similar to a recently published structure. The conformational change of CCHFV N upon deoligomerization results in the exposure of the caspase-3 cleavage site and subjects CCHFV N to caspase-3 cleavage. Mutations of this cleavage site inhibit cleavage by caspase-3 and result in enhanced viral polymerase activity. Thus, cleavage of CCHFV N by host cell caspase-3 appears to be crucial for controlling viral RNA synthesis and represents an important host defense mechanism against CCHFV infection.

Collaboration


Dive into the Yee-Joo Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Burtram C. Fielding

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony E. Ting

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Sunil K. Lal

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Oi-Wing Ng

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge