Yee Lian Chew
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yee Lian Chew.
PLOS Computational Biology | 2016
Barry Bentley; Robyn Branicky; Christopher L Barnes; Yee Lian Chew; Eviatar Yemini; Edward T. Bullmore; Petra E. Vértes; William R. Schafer
Connectomics has focused primarily on the mapping of synaptic links in the brain; yet it is well established that extrasynaptic volume transmission, especially via monoamines and neuropeptides, is also critical to brain function and occurs primarily outside the synaptic connectome. We have mapped the putative monoamine connections, as well as a subset of neuropeptide connections, in C. elegans based on new and published gene expression data. The monoamine and neuropeptide networks exhibit distinct topological properties, with the monoamine network displaying a highly disassortative star-like structure with a rich-club of interconnected broadcasting hubs, and the neuropeptide network showing a more recurrent, highly clustered topology. Despite the low degree of overlap between the extrasynaptic (or wireless) and synaptic (or wired) connectomes, we find highly significant multilink motifs of interaction, pinpointing locations in the network where aminergic and neuropeptide signalling modulate synaptic activity. Thus, the C. elegans connectome can be mapped as a multiplex network with synaptic, gap junction, and neuromodulator layers representing alternative modes of interaction between neurons. This provides a new topological plan for understanding how aminergic and peptidergic modulation of behaviour is achieved by specific motifs and loci of integration between hard-wired synaptic or junctional circuits and extrasynaptic signals wirelessly broadcast from a small number of modulatory neurons.
Nature | 2017
Gang Yan; Petra E. Vértes; Emma K. Towlson; Yee Lian Chew; Denise S. Walker; William R. Schafer; Albert-László Barabási
Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure–function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.
Scientific Data | 2017
Yee Lian Chew; Denise S. Walker; Emma K. Towlson; Petra E. Vértes; Gang Yan; Albert-László Barabási; William R. Schafer
Lesioning studies have provided important insight into the functions of brain regions in humans and other animals. In the nematode Caenorhabditis elegans, with a small nervous system of 302 identified neurons, it is possible to generate lesions with single cell resolution and infer the roles of individual neurons in behaviour. Here we present a dataset of ~300 video recordings representing the locomotor behaviour of animals carrying single-cell ablations of 5 different motorneurons. Each file includes a raw video of approximately 27,000 frames; each frame has also been segmented to yield the position, contour, and body curvature of the tracked animal. These recordings can be further analysed using publicly-available software to extract features relevant to behavioural phenotypes. This dataset therefore represents a useful resource for probing the neural basis of behaviour in C. elegans, a resource we hope to augment in the future with ablation recordings for additional neurons.
Philosophical Transactions of the Royal Society B | 2018
Yee Lian Chew; Laura J. Grundy; André E. X. Brown; Isabel Beets; William R. Schafer
Neuropeptide signalling has been implicated in a wide variety of biological processes in diverse organisms, from invertebrates to humans. The Caenorhabditis elegans genome has at least 154 neuropeptide precursor genes, encoding over 300 bioactive peptides. These neuromodulators are thought to largely signal beyond ‘wired’ chemical/electrical synapse connections, therefore creating a ‘wireless’ network for neuronal communication. Here, we investigated how behavioural states are affected by neuropeptide signalling through the G protein-coupled receptor SEB-3, which belongs to a bilaterian family of orphan secretin receptors. Using reverse pharmacology, we identified the neuropeptide NLP-49 as a ligand of this evolutionarily conserved neuropeptide receptor. Our findings demonstrate novel roles for NLP-49 and SEB-3 in locomotion, arousal and egg-laying. Specifically, high-content analysis of locomotor behaviour indicates that seb-3 and nlp-49 deletion mutants cause remarkably similar abnormalities in movement dynamics, which are reversed by overexpression of wild-type transgenes. Overexpression of NLP-49 in AVK interneurons leads to heightened locomotor arousal, an effect that is dependent on seb-3. Finally, seb-3 and nlp-49 mutants also show constitutive egg-laying in liquid medium and alter the temporal pattern of egg-laying in similar ways. Together, these results provide in vivo evidence that NLP-49 peptides act through SEB-3 to modulate behaviour, and highlight the importance of neuropeptide signalling in the control of behavioural states. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.
Philosophical Transactions of the Royal Society B | 2018
Emma K. Towlson; Petra E. Vértes; Gang Yan; Yee Lian Chew; Denise S. Walker; William R. Schafer; Albert-László Barabási
Control is essential to the functioning of any neural system. Indeed, under healthy conditions the brain must be able to continuously maintain a tight functional control between the systems inputs and outputs. One may therefore hypothesize that the brains wiring is predetermined by the need to maintain control across multiple scales, maintaining the stability of key internal variables, and producing behaviour in response to environmental cues. Recent advances in network control have offered a powerful mathematical framework to explore the structure–function relationship in complex biological, social and technological networks, and are beginning to yield important and precise insights on neuronal systems. The network control paradigm promises a predictive, quantitative framework to unite the distinct datasets necessary to fully describe a nervous system, and provide mechanistic explanations for the observed structure and function relationships. Here, we provide a thorough review of the network control framework as applied to Caenorhabditis elegans (Yan et al. 2017 Nature 550, 519–523. (doi:10.1038/nature24056)), in the style of Frequently Asked Questions. We present the theoretical, computational and experimental aspects of network control, and discuss its current capabilities and limitations, together with the next likely advances and improvements. We further present the Python code to enable exploration of control principles in a manner specific to this prototypical organism. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.
Neuron | 2018
Yee Lian Chew; Yoshinori Tanizawa; Yongmin Cho; Buyun Zhao; Alex J. Yu; Evan L. Ardiel; Ithai Rabinowitch; Jihong Bai; Catharine H. Rankin; Hang Lu; Isabel Beets; William R. Schafer
Summary Sensitization is a simple form of behavioral plasticity by which an initial stimulus, often signaling danger, leads to increased responsiveness to subsequent stimuli. Cross-modal sensitization is an important feature of arousal in many organisms, yet its molecular and neural mechanisms are incompletely understood. Here we show that in C. elegans, aversive mechanical stimuli lead to both enhanced locomotor activity and sensitization of aversive chemosensory pathways. Both locomotor arousal and cross-modal sensitization depend on the release of FLP-20 neuropeptides from primary mechanosensory neurons and on their receptor FRPR-3. Surprisingly, the critical site of action of FRPR-3 for both sensory and locomotor arousal is RID, a single neuroendocrine cell specialized for the release of neuropeptides that responds to mechanical stimuli in a FLP-20-dependent manner. Thus, FLP-20 peptides function as an afferent arousal signal that conveys mechanosensory information to central neurons that modulate arousal and other behavioral states. Video Abstract
eLife | 2017
Yee Lian Chew; William R. Schafer
A map of a neuronal circuit in a marine worm reveals how simple networks of neurons can control behavior.
The EMBO Journal | 2016
Yee Lian Chew; William R. Schafer
To maintain protein homoeostasis, animals have developed stress response pathways such as the ubiquitin proteasome system (UPS). Joshi and colleagues have demonstrated that in Caenorhabditis elegans, dopamine release from neurons acts on receptors in the epithelia to modulate protein turnover, by controlling the expression of regulators of the xenobiotic stress response. Dopamine receptor mutants challenged with pathogenic bacteria were defective in protein turnover and were also more sensitive to infection thus highlighting a role for monoamine signalling in innate immunity and stress responses.
Archive | 2017
Denise S. Walker; Yee Lian Chew; William R. Schafer
Archive | 2018
Yee Lian Chew; Laura J. Grundy; André E. X. Brown; Isabel Beets; William R Schafer