Yefei Han
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yefei Han.
Journal of Virology | 2004
Yefei Han; Kara G. Lassen; Daphne Monie; Ahmad R. Sedaghat; Shino Shimoji; Xiao Liu; Theodore C. Pierson; Joseph B. Margolick; Robert F. Siliciano; Janet D. Siliciano
ABSTRACT Resting CD4+ T-cell populations from human immunodeficiency virus type 1 (HIV-1)-infected individuals include cells with integrated HIV-1 DNA. In individuals showing suppression of viremia during highly active antiretroviral therapy (HAART), resting CD4+ T-cell populations do not produce virus without cellular activation. To determine whether the nonproductive nature of the infection in resting CD4+ T cells is due to retroviral integration into chromosomal regions that are repressive for transcription, we used inverse PCR to characterize the HIV-1 integration sites in vivo in resting CD4+ T cells from patients on HAART. Of 74 integration sites from 16 patients, 93% resided within transcription units, usually within introns. Integration was random with respect to transcriptional orientation relative to the host gene and with respect to position within the host gene. Of integration sites within well-characterized genes, 91% (51 of 56) were in genes that were actively expressed in resting CD4+ T cells, as directly demonstrated by reverse transcriptase PCR (RT-PCR). These results predict that HIV-1 sequences may be included in the primary transcripts of host genes as part of rapidly degraded introns. RT-PCR experiments confirmed the presence of HIV-1 sequences within transcripts initiating upstream of the HIV-1 transcription start site. Taken together, these results demonstrate that HIV-1 genomes reside within actively transcribed host genes in resting CD4+ T cells in vivo.
Nature Reviews Microbiology | 2007
Yefei Han; Megan Wind-Rotolo; Hung-Chih Yang; Janet D. Siliciano; Robert F. Siliciano
Viral latency is a reversibly non-productive state of infection that allows some viruses to evade host immune responses. As a consequence of its tropism for activated CD4+ T cells, HIV-1 can establish latent infection in resting memory CD4+ T cells, which are generated when activated CD4+ T cells return to a quiescent state. Latent HIV-1 persists as a stably integrated but transcriptionally silent provirus. In this state, the virus is unaffected by immune responses or antiretroviral drugs, and this latent reservoir in resting CD4+ T cells is a major barrier to curing the infection. Unfortunately, there is no simple assay to measure the number of latently infected cells in a patient, nor is there an entirely representative in vitro model in which to explore the molecular mechanisms of latency. This Review will consider current approaches to the analysis of HIV-1 latency both in vivo and in vitro.
Journal of Clinical Investigation | 2009
Hung-Chih Yang; Sifei Xing; Liang Shan; Karen A. O’Connell; Jason B. Dinoso; Anding Shen; Yan Zhou; Cynthia K. Shrum; Yefei Han; Jun O. Liu; Hao Zhang; Joseph B. Margolick; Robert F. Siliciano
The development of highly active antiretroviral therapy (HAART) to treat individuals infected with HIV-1 has dramatically improved patient outcomes, but HAART still fails to cure the infection. The latent viral reservoir in resting CD4+ T cells is a major barrier to virus eradication. Elimination of this reservoir requires reactivation of the latent virus. However, strategies for reactivating HIV-1 through nonspecific T cell activation have clinically unacceptable toxicities. We describe here the development of what we believe to be a novel in vitro model of HIV-1 latency that we used to search for compounds that can reverse latency. Human primary CD4+ T cells were transduced with the prosurvival molecule Bcl-2, and the resulting cells were shown to recapitulate the quiescent state of resting CD4+ T cells in vivo. Using this model system, we screened small-molecule libraries and identified a compound that reactivated latent HIV-1 without inducing global T cell activation, 5-hydroxynaphthalene-1,4-dione (5HN). Unlike previously described latency-reversing agents, 5HN activated latent HIV-1 through ROS and NF-kappaB without affecting nuclear factor of activated T cells (NFAT) and PKC, demonstrating that TCR pathways can be dissected and utilized to purge latent virus. Our study expands the number of classes of latency-reversing therapeutics and demonstrates the utility of this in vitro model for finding strategies to eradicate HIV-1 infection.
Journal of Virology | 2005
Tara L. Kieffer; Patty Kwon; Richard E. Nettles; Yefei Han; Stuart C. Ray; Robert F. Siliciano
ABSTRACT In vitro studies have shown that the host cytidine deaminase APOBEC3G causes lethal hypermutation in human immunodeficiency virus type 1 reverse transcripts unless its incorporation into virions is blocked by Vif. By examining stably archived sequences in resting CD4+ T cells, we show that hypermutation occurs in most if not all infected individuals. Hypermutated sequences comprised >9% of archived species in resting CD4+ T cells but were not found in plasma virus. Mutations occurred in predicted contexts, with notable hotspots. Thus, defects in Vif function in vivo give rise to hypermutated viral genomes that can be integrated but do not produce progeny viruses.
Cell Host & Microbe | 2008
Yefei Han; Yijie B. Lin; Wenfeng An; Jie Xu; Hung-Chih Yang; Karen A. O'Connell; Dominic Dordai; Jef D. Boeke; Janet D. Siliciano; Robert F. Siliciano
Integrated HIV-1 genomes are found within actively transcribed host genes in latently infected CD4(+) T cells. Readthrough transcription of the host gene might therefore suppress HIV-1 gene expression and promote the latent infection that allows viral persistence in patients on therapy. To address the effect of host gene readthrough, we used homologous recombination to insert HIV-1 genomes in either orientation into an identical position within an intron of an actively transcribed host gene, hypoxanthine-guanine phosphoribosyltransferase (HPRT). Constructs were engineered to permit or block readthrough transcription of HPRT. Readthrough transcription inhibited HIV-1 gene expression for convergently orientated provirus but enhanced HIV-1 gene expression when HIV-1 was in the same orientation as the host gene. Orientation had a >10-fold effect on HIV-1 gene expression. Due to the nature of HIV-1 integration sites in vivo, this orientation-dependent regulation can influence the vast majority of infected cells and adds complexity to the maintenance of latency.
Journal of Virology | 2008
Justin R. Bailey; Karen A. O'Connell; Hung-Chih Yang; Yefei Han; Jie Xu; Benjamin L. Jilek; Thomas M. Williams; Stuart C. Ray; Robert F. Siliciano; Joel N. Blankson
ABSTRACT Elite suppressors (ES) are untreated human immunodeficiency virus type 1 (HIV-1)-infected patients who maintain viral loads of <50 copies/ml. The mechanisms involved in this control of viral replication remain unclear. Prior studies suggested that these patients, as well as long-term nonprogressors, are infected with defective HIV-1 variants. Other reports have shown that the HLA-B*27 and -B*57 alleles are overrepresented in these patients, suggesting that host factors play a role in the control of viral replication. In order to distinguish between these hypotheses, we studied differences in viral isolates and immune responses of an HIV-1 transmission pair. While both patients are HLA-B*57 positive, the transmitter progressed to AIDS, whereas the recipient, who is also HLA-B*27 positive, is an ES. Isolates from both patients were replication competent and contained the T242N escape mutation in Gag, which is known to decrease viral fitness. While the acquisition of compensatory mutations occurred in isolates from the progressor, a superior HIV-specific CD8+ T-cell response in the ES appears to have prevented viral replication and thus the evolution toward a more fit variant. In addition, CD8+ T cells in the ES have selected for a rare mutation in an immunodominant HLA-B*27-restricted Gag epitope, which also has a negative impact on fitness. The results strongly suggest that through direct and indirect mechanisms, CD8+ T cells in some ES control HIV-1 isolates are capable of causing profound immunosuppression.
Journal of Virology | 2009
Karen A. O'Connell; Yefei Han; Thomas M. Williams; Robert F. Siliciano; Joel N. Blankson
ABSTRACT Natural killer (NK) cells are associated with the innate immune response and are important in many viral infections. Recent studies indicate that NK cells can control human immunodeficiency virus type 1 (HIV-1) replication. We studied the effect of NK cells on HIV-1 replication in a subpopulation of HIV-1-infected individuals termed elite suppressors (ES) or elite controllers. These patients maintain a clinically undetectable viral load without treatment and thus provide a fascinating cohort in which to study the immunological response to HIV-1. Using an autologous system, we analyzed the effects of NK cells and CD8+ T cells on viral replication in CD4+ T lymphoblasts. Although we had postulated that NK cells of ES would be highly effective at controlling viral replication, we found that NK cells from some, but not all, ES were capable of inhibiting replication in the presence of interleukin-2, and the inhibition was less robust than that mediated by CD8+ T cells. Additionally, we examined whether particular alleles of the KIR receptors, specifically KIR3DS1 and KIR3DL1, or allele-ligand combinations correlated with the control of HIV-1 replication by NK cells and whether any specific KIR alleles were overrepresented in ES. Our ES cohort did not differ from the general population with respect to the frequency of individual KIR. However, of the eight ES studied, the four exhibiting the most NK cell-mediated control of viral replication also had the fewest activating KIR and were haplotype A. Thus, the strong NK cell-mediated inhibition of viral replication is not necessary for the immunological control of HIV-1 in all ES.
AIDS | 2008
Yefei Han; Jun Lai; Patricia Barditch-Crovo; Joel E. Gallant; Thomas M Williams; Robert F. Siliciano; Joel N. Blankson
Elite suppressors (ES) are untreated HIV-1-infected patients who maintain undetectable viral loads. A recent whole-genome analysis identified two independent polymorphisms associated with low viral loads in untreated HIV-1 infection. We screened 16 ES; none were positive for the protective HLA complex 5 gene polymorphism, and only four were positive for the protective polymorphism associated with the HLA-C gene. These results suggest that some ES control viremia by mechanisms independent of the newly-identified genetic factors.
Nature Medicine | 2007
Yefei Han; Robert F. Siliciano
MicroRNAs contribute to HIV-1 latency in resting T cells. This finding could potentially be used in the development of therapies targeted to purge the latent reservoir in an effort to clear the body of virus (pages 1241–1247).
JAMA | 2005
Richard E. Nettles; Tara L. Kieffer; Patty Kwon; Daphne Monie; Yefei Han; Teresa L. Parsons; Joseph Cofrancesco; Joel E. Gallant; Thomas C. Quinn; Brooks Jackson; Charles Flexner; Kathryn A. Carson; Stuart C. Ray; Deborah Persaud; Robert F. Siliciano