Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yefeng Zheng is active.

Publication


Featured researches published by Yefeng Zheng.


IEEE Transactions on Medical Imaging | 2008

Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features

Yefeng Zheng; Adrian Barbu; Bogdan Georgescu; Michael Scheuering; Dorin Comaniciu

We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2006

Robust point matching for nonrigid shapes by preserving local neighborhood structures

Yefeng Zheng; David S. Doermann

In previous work on point matching, a set of points is often treated as an instance of a joint distribution to exploit global relationships in the point set. For nonrigid shapes, however, the local relationship among neighboring points is stronger and more stable than the global one. In this paper, we introduce the notion of a neighborhood structure for the general point matching problem. We formulate point matching as an optimization problem to preserve local neighborhood structures during matching. Our approach has a simple graph matching interpretation, where each point is a node in the graph, and two nodes are connected by an edge if they are neighbors. The optimal match between two graphs is the one that maximizes the number of matched edges. Existing techniques are leveraged to search for an optimal solution with the shape context distance used to initialize the graph matching, followed by relaxation labeling updates for refinement. Extensive experiments show the robustness of our approach under deformation, noise in point locations, outliers, occlusion, and rotation. It outperforms the shape context and TPS-RPM algorithms on most scenarios.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2004

Machine printed text and handwriting identification in noisy document images

Yefeng Zheng; Huiping Li; David S. Doermann

In this paper, we address the problem of the identification of text in noisy document images. We are especially focused on segmenting and identifying between handwriting and machine printed text because: 1) Handwriting in a document often indicates corrections, additions, or other supplemental information that should be treated differently from the main content and 2) the segmentation and recognition techniques requested for machine printed and handwritten text are significantly different. A novel aspect of our approach is that we treat noise as a separate class and model noise based on selected features. Trained Fisher classifiers are used to identify machine printed text and handwriting from noise and we further exploit context to refine the classification. A Markov Random Field-based (MRF) approach is used to model the geometrical structure of the printed text, handwriting, and noise to rectify misclassifications. Experimental results show that our approach is robust and can significantly improve page segmentation in noisy document collections.


international conference on computer vision | 2007

Fast Automatic Heart Chamber Segmentation from 3D CT Data Using Marginal Space Learning and Steerable Features

Yefeng Zheng; Adrian Barbu; Bogdan Georgescu; Michael Scheuering; Dorin Comaniciu

Multi-chamber heart segmentation is a prerequisite for global quantification of the cardiac function. The complexity of cardiac anatomy, poor contrast, noise or motion artifacts makes this segmentation problem a challenging task. In this paper, we present an efficient, robust, and fully automatic segmentation method for 3D cardiac computed tomography (CT) volumes. Our approach is based on recent advances in learning discriminative object models and we exploit a large database of annotated CT volumes. We formulate the segmentation as a two step learning problem: anatomical structure localization and boundary delineation. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-dimensional similarity search problem for localizing the heart chambers. MSL reduces the number of testing hypotheses by about six orders of magnitude. We also propose to use steerable image features, which incorporate the orientation and scale information into the distribution of sampling points, thus avoiding the time-consuming volume data rotation operations. After determining the similarity transformation of the heart chambers, we estimate the 3D shape through learning-based boundary delineation. Extensive experiments on multi-chamber heart segmentation demonstrate the efficiency and robustness of the proposed approach, comparing favorably to the state-of-the-art. This is the first study reporting stable results on a large cardiac CT dataset with 323 volumes. In addition, we achieve a speed of less than eight seconds for automatic segmentation of all four chambers.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2008

Script-Independent Text Line Segmentation in Freestyle Handwritten Documents

Yi Li; Yefeng Zheng; David S. Doermann; Stefan Jaeger

Text line segmentation in freestyle handwritten documents remains an open document analysis problem. Curvilinear text lines and small gaps between neighboring text lines present a challenge to algorithms developed for machine printed or hand-printed documents. In this paper, we propose a novel approach based on density estimation and a state-of-the-art image segmentation technique, the level set method. From an input document image, we estimate a probability map, where each element represents the probability that the underlying pixel belongs to a text line. The level set method is then exploited to determine the boundary of neighboring text lines by evolving an initial estimate. Unlike connected component based methods ( [1], [2] for example), the proposed algorithm does not use any script-specific knowledge. Extensive quantitative experiments on freestyle handwritten documents with diverse scripts, such as Arabic, Chinese, Korean, and Hindi, demonstrate that our algorithm consistently outperforms previous methods. Further experiments show the proposed algorithm is robust to scale change, rotation, and noise.


computer vision and pattern recognition | 2008

Hierarchical, learning-based automatic liver segmentation

Haibin Ling; Shaohua Kevin Zhou; Yefeng Zheng; Bogdan Georgescu; Michael Suehling; Dorin Comaniciu

In this paper we present a hierarchical, learning-based approach for automatic and accurate liver segmentation from 3D CT volumes. We target CT volumes that come from largely diverse sources (e.g., diseased in six different organs) and are generated by different scanning protocols (e.g., contrast and non-contrast, various resolution and position). Three key ingredients are combined to solve the segmentation problem. First, a hierarchical framework is used to efficiently and effectively monitor the accuracy propagation in a coarse-to-fine fashion. Second, two new learning techniques, marginal space learning and steerable features, are applied for robust boundary inference. This enables handling of highly heterogeneous texture pattern. Third, a novel shape space initialization is proposed to improve traditional methods that are limited to similarity transformation. The proposed approach is tested on a challenging dataset containing 174 volumes. Our approach not only produces excellent segmentation accuracy, but also runs about fifty times faster than state-of-the-art solutions [7, 9].


computer vision and pattern recognition | 2008

3D ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers

Lin Yang; Bogdan Georgescu; Yefeng Zheng; Peter Meer; Dorin Comaniciu

Tracking the left ventricle (LV) in 3D ultrasound data is a challenging task because of the poor image quality and speed requirements. Many previous algorithms applied standard 2D tracking methods to tackle the 3D problem. However, the performance is limited due to increased data size, landmarks ambiguity, signal drop-out or non-rigid deformation. In this paper we present a robust, fast and accurate 3D LV tracking algorithm. We propose a novel one-step forward prediction to generate the motion prior using motion manifold learning, and introduce two collaborative trackers to achieve both temporal consistency and failure recovery. Compared with tracking by detection and 3D optical flow, our algorithm provides the best results and sub-voxel accuracy. The new tracking algorithm is completely automatic and computationally efficient. It requires less than 1.5 seconds to process a 3D volume which contains 4,925,440 voxels.


Medical Image Analysis | 2013

Spine detection in CT and MR using iterated marginal space learning

B. Michael Kelm; Michael Wels; S. Kevin Zhou; Sascha Seifert; Michael Suehling; Yefeng Zheng; Dorin Comaniciu

Examinations of the spinal column with both, Magnetic Resonance (MR) imaging and Computed Tomography (CT), often require a precise three-dimensional positioning, angulation and labeling of the spinal disks and the vertebrae. A fully automatic and robust approach is a prerequisite for an automated scan alignment as well as for the segmentation and analysis of spinal disks and vertebral bodies in Computer Aided Diagnosis (CAD) applications. In this article, we present a novel method that combines Marginal Space Learning (MSL), a recently introduced concept for efficient discriminative object detection, with a generative anatomical network that incorporates relative pose information for the detection of multiple objects. It is used to simultaneously detect and label the spinal disks. While a novel iterative version of MSL is used to quickly generate candidate detections comprising position, orientation, and scale of the disks with high sensitivity, the anatomical network selects the most likely candidates using a learned prior on the individual nine dimensional transformation spaces. Finally, we propose an optional case-adaptive segmentation approach that allows to segment the spinal disks and vertebrae in MR and CT respectively. Since the proposed approaches are learning-based, they can be trained for MR or CT alike. Experimental results based on 42 MR and 30 CT volumes show that our system not only achieves superior accuracy but also is among the fastest systems of its kind in the literature. On the MR data set the spinal disks of a whole spine are detected in 11.5s on average with 98.6% sensitivity and 0.073 false positive detections per volume. On the CT data a comparable sensitivity of 98.0% with 0.267 false positives is achieved. Detected disks are localized with an average position error of 2.4 mm/3.2 mm and angular error of 3.9°/4.5° in MR/CT, which is close to the employed hypothesis resolution of 2.1 mm and 3.3°.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2009

Signature Detection and Matching for Document Image Retrieval

Guangyu Zhu; Yefeng Zheng; David S. Doermann; Stefan Jaeger

As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches.


medical image computing and computer assisted intervention | 2010

Automatic aorta segmentation and valve landmark detection in C-Arm CT: application to aortic valve implantation

Yefeng Zheng; Matthias John; Rui Liao; Jan Boese; Uwe Kirschstein; Bogdan Georgescu; S. Kevin Zhou; Thomas Walther; Gernot Brockmann; Dorin Comaniciu

C-arm CT is an emerging imaging technique in transcatheter aortic valve implantation (TAVI) surgery. Automatic aorta segmentation and valve landmark detection in a C-arm CT volume has important applications in TAVI by providing valuable 3D measurements for surgery planning. Overlaying 3D segmentation onto 2D real time fluoroscopic images also provides critical visual guidance during the surgery. In this paper, we present a part-based aorta segmentation approach, which can handle aorta structure variation in case that the aortic arch and descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset. Eight important aortic valve landmarks (three aortic hinge points, three commissure points, and two coronary ostia) are also detected automatically in our system. Under the guidance of the detected landmarks, the physicians can deploy the prosthetic valve properly. Our approach is robust under variations of contrast agent. Taking about 1.4 seconds to process one volume, it is also computationally efficient.

Collaboration


Dive into the Yefeng Zheng's collaboration.

Researchain Logo
Decentralizing Knowledge