Yefim I. Ronin
University of Haifa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yefim I. Ronin.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Junhua Peng; Yefim I. Ronin; Tzion Fahima; Marion S. Röder; Y. C. Li; Eviatar Nevo; Abraham B. Korol
Wild emmer wheat, Triticum dicoccoides, is the progenitor of modern tetraploid and hexaploid cultivated wheats. Our objective was to map domestication-related quantitative trait loci (QTL) in T. dicoccoides. The studied traits include brittle rachis, heading date, plant height, grain size, yield, and yield components. Our mapping population was derived from a cross between T. dicoccoides and Triticum durum. Approximately 70 domestication QTL effects were detected, nonrandomly distributed among and along chromosomes. Seven domestication syndrome factors were proposed, each affecting 5–11 traits. We showed: (i) clustering and strong effects of some QTLs; (ii) remarkable genomic association of strong domestication-related QTLs with gene-rich regions; and (iii) unexpected predominance of QTL effects in the A genome. The A genome of wheat may have played a more important role than the B genome during domestication evolution. The cryptic beneficial alleles at specific QTLs derived from T. dicoccoides may contribute to wheat and cereal improvement.
Theoretical and Applied Genetics | 1999
Junhua Peng; Tzion Fahima; Marion S. Röder; Y. C. Li; A. Dahan; A. Grama; Yefim I. Ronin; Abraham B. Korol; Eviatar Nevo
Abstract Stripe rust caused by Puccinia striifomis West. is one of the most devastating diseases relating to wheat production. Wild emmer wheat, Triticum dicoccoides, the tetraploid progenitor of cultivated wheat, has proven to be a valuable source of novel stripe-rust resistance genes for wheat breeding. For example, T. dicoccoides accessions from Mt. Hermon, Israel, are uniformly and highly resistant to stripe-rust. The main objective of the present study is to map a stripe-rust resistance gene, derived from the unique Mt. Hermon population of wild emmer, using microsatellite markers. An F2 mapping population was established by crossing stripe-rust resistant T. dicoccoides accession H52 from Mt. Hermon with the Triticum durum cultivar Langdon. The stripe-rust resistance derived from accession H52 was found to be controlled by a single dominant gene which was temporarily designated as YrH52. Out of 120 microsatellite markers tested, 109 (91%) showed polymorphism between the parental lines. Among 79 segregating microsatellite loci generated from 56 microsatellite primer pairs, nine were linked to YrH52 with recombination frequencies of 0.02–0.35, and LOD scores of 3.56–54.22. A genetic map of chromosome 1B, consisting of ten microsatellite loci and the stripe-rust resistance gene YrH52, was constructed with a total map length of 101.5 cM. YrH52 is also closely linked to RFLP marker Nor1 with a map distance of 1.4 cM and a LOD value of 29.62. Apparent negative crossover interference was observed in chromosome 1B, especially in the region spanning the centromere. Negative crossover interference may be a common characteristic of gene-rich regions or gene clusters in specific chromosomes.
Theoretical and Applied Genetics | 1997
Genlou Sun; Tzion Fahima; Abraham B. Korol; T. Turpeinen; A. Grama; Yefim I. Ronin; Eviatar Nevo
Abstract The Yr15 gene of wheat confers resistance to the stripe rust pathogen Puccinia striiformis West., which is one of the most devastating diseases of wheat throughout the world. In the present study, molecular markers flanking the Yr15 gene of wheat have been identified using the near-isogenic-lines approach. RFLP screening of 76 probe-enzyme combinations revealed one polymorphic marker (Nor/TaqI) between the susceptible and the resistant lines. In addition, out of 340 RAPD primers tested, six produced polymorphic RAPD bands between the susceptible and the resistant lines. The genetic linkage of the polymorphic markers was tested on segregating F2 population (123 plants) derived from crosses between stripe rust-susceptible Triticum durum wheat, cv D447, and a BC3F9 resistant line carrying Yr15 in a D447 background. A 2.8-kb fragment produced by the Nor RFLP probe and a 1420-bp PCR product generated by the RAPD primer OPB13 showed linkage, in coupling, with the Yr15 gene. Employing the standard maximum-likelihood technique it was found that the order OPB131420–Yr15–Nor1 on chromosome 1B appeared to be no less than 1000-times more probable than the closest alternative. The map distances between OPB131420–Yr15–Nor1 are 27.1 cM and 11.0 cM for the first and second intervals, respectively. The application of marker-assisted selection for the breeding of new wheat cultivars with the stripe rust resistance gene is discussed.
Genetics | 2006
Yan Fu; Tsui-Jung Wen; Yefim I. Ronin; Hsin D. Chen; Ling Guo; David I. Mester; Yongjie Yang; Michael Lee; Abraham B. Korol; Daniel Ashlock
A new genetic map of maize, ISU–IBM Map4, that integrates 2029 existing markers with 1329 new indel polymorphism (IDP) markers has been developed using intermated recombinant inbred lines (IRILs) from the intermated B73 × Mo17 (IBM) population. The website http://magi.plantgenomics.iastate.edu provides access to IDP primer sequences, sequences from which IDP primers were designed, optimized marker-specific PCR conditions, and polymorphism data for all IDP markers. This new gene-based genetic map will facilitate a wide variety of genetic and genomic research projects, including map-based genome sequencing and gene cloning. The mosaic structures of the genomes of 91 IRILs, an important resource for identifying and mapping QTL and eQTL, were defined. Analyses of segregation data associated with markers genotyped in three B73/Mo17-derived mapping populations (F2, Syn5, and IBM) demonstrate that allele frequencies were significantly altered during the development of the IBM IRILs. The observations that two segregation distortion regions overlap with maize flowering-time QTL suggest that the altered allele frequencies were a consequence of inadvertent selection. Detection of two-locus gamete disequilibrium provides another means to extract functional genomic data from well-characterized plant RILs.
Computational Biology and Chemistry | 2004
David I. Mester; Yefim I. Ronin; Eviatar Nevo; Abraham B. Korol
There are several very difficult problems related to genetic or genomic analysis that belong to the field of discrete optimization in a set of all possible orders. With n elements (points, markers, clones, sequences, etc.), the number of all possible orders is n!/2 and only one of these is considered to be the true order. A classical formulation of a similar mathematical problem is the well-known traveling salesperson problem model (TSP). Genetic analogues of this problem include: ordering in multilocus genetic mapping, evolutionary tree reconstruction, building physical maps (contig assembling for overlapping clones and radiation hybrid mapping), and others. A novel, fast and reliable hybrid algorithm based on evolution strategy and guided local search discrete optimization was developed for TSP formulation of the multilocus mapping problems. High performance and high precision of the employed algorithm named guided evolution strategy (GES) allows verification of the obtained multilocus orders based on different computing-intensive approaches (e.g., bootstrap or jackknife) for detection and removing unreliable marker loci, hence, stabilizing the resulting paths. The efficiency of the proposed algorithm is demonstrated on standard TSP problems and on simulated data of multilocus genetic maps up to 1000 points per linkage group.
Heredity | 1998
Abraham B. Korol; Yefim I. Ronin; Eviatar Nevo; P M Hayes
Employing Monte Carlo simulations, we demonstrate the advantages of multitrait analysis in detection of linked QTL effects within the framework of mixture models. In spite of an increased number of parameters to be estimated, compared to the single-trait formulation, the proposed method allows for an improvement of detection power and estimation precision of linked QTLs in both adjacent or nonadjacent intervals, with coupling and repulsion effects. The results obtained are illustrated by examples based on data of the North American Barley Genome Mapping Project.
Theoretical and Applied Genetics | 1995
Yefim I. Ronin; Valery M. Kirzhner; Abraham B. Korol
An efficient approach to increase the resolution power of linkage analysis between a quantitative trait locus (QTL) and a marker is described in this paper. It is based on a counting of the correlations between the QTs of interest. Such correlations may be caused by the segregation of other genes, environmental effects and physiological limitations. Let a QT locus A/a affect two correlated traits, x and y. Then, within the framework of mixture models, the accuracy of the parameter estimates may be seriously increased, if bivariate densities faa(x, y), fAa(x, y) and fAA(x, y) rather than the marginals are considered as the basis for mixture decomposition. The efficiency of the proposed method was demonstrated employing Monte-Carlo simulations. Several types of progeny were considered, including backcross, F2 and recombinant inbred lines. It was shown that provided the correlation between the traits involved was high enough, a good resolution to the problem is possible even if the QTL groups are strongly overlapping for their marginal densities.
Theoretical and Applied Genetics | 1998
Yefim I. Ronin; Abraham B. Korol; J.I. Weller
Abstract Segregating quantitative trait loci can be detected via linkage to genetic markers. By selectively genotyping individuals with extreme phenotypes for the quantitative trait, the power per individual genotyped is increased at the expense of the power per individual phenotyped, but linear-model estimates of the quantitative-locus effect will be biased. The properties of single- and multiple-trait maximum-likelihood estimates of quantitative-loci parameters derived from selectively genotyped samples were investigated using Monte-Carlo simulations of backcross populations. All individuals with trait records were included in the analyses. All quantitative-locus parameters and the residual correlation were unbiasedly estimated by multiple-trait maximum-likelihood methodology. With single-trait maximum-likelihood, unbiased estimates for quantitative-locus effect and location, and the residual variance, were obtained for the trait under selection, but biased estimates were derived for a correlated trait that was analyzed separately. When an effect of the QTL was simulated only on the trait under selection, a “ghost” effect was also found for the correlated trait. Furthermore, if an effect was simulated only for the correlated trait, then the statistical power was less than that obtained with a random sample of equal size. With multiple-trait analyses, the power of quantitative-trait locus detection was always greater with selective genotyping.
Molecular Breeding | 2015
Elitsur Yaniv; Dina Raats; Yefim I. Ronin; Abraham B. Korol; Adriana Grama; Harbans Bariana; Jorge Dubcovsky; Alan H. Schulman; Tzion Fahima
Stripe rust disease is caused by the fungus Puccinia striiformis f. sp. tritici and severely threatens wheat worldwide, repeatedly breaking resistance conferred by resistance genes and evolving more aggressive strains. Wild emmer wheat, Triticum dicoccoides, is an important source for novel stripe rust resistance (Yr) genes. Yr15, a major gene located on chromosome 1BS of T. dicoccoides, was previously reported to confer resistance to a broad spectrum of stripe rust isolates, at both seedling and adult plant stages. Introgressions of Yr15 into cultivated T. aestivum bread wheat and T. durum pasta wheat that began in the 1980s are widely used. In the present study, we aimed to validate SSR markers from the Yr15 region as efficient tools for marker-assisted selection (MAS) for introgression of Yr15 into wheat and to compare the outcome of gene introgression by MAS and by conventional phenotypic selection. Our findings establish the validity of MAS for introgression of Yr15 into wheat. We show that the size of the introgressed segment, defined by flanking markers, varies for both phenotypic selection and MAS. The genetic distance of the MAS marker from Yr15 and the number of backcross steps were the main factors affecting the length of the introgressed donor segments. Markers Xbarc8 and Xgwm493, which are the nearest flanking markers studied, were consistent and polymorphic in all 34 introgressions reported here and are therefore the most recommended markers for the introgression of Yr15 into wheat cultivars. Introgression directed by markers, rather than by phenotype, will facilitate simultaneous selection for multiple stripe rust resistant genes and will help to avoid escapees during the selection process.
G3: Genes, Genomes, Genetics | 2014
Umesh K. Reddy; Padma Nimmakayala; Amnon Levi; Venkata Lakshmi Abburi; Thangasamy Saminathan; Yan R. Tomason; Gopinath Vajja; Rishi Reddy; Lavanya Abburi; Todd C. Wehner; Yefim I. Ronin; Abraham Karol
We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima’s D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication.