Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yehong Kuang is active.

Publication


Featured researches published by Yehong Kuang.


Biochemical Pharmacology | 2009

Nilotinib (AMN107, Tasigna®) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters

Amit K. Tiwari; Kamlesh Sodani; Sirong Wang; Yehong Kuang; Charles R. Ashby; Xiang Chen; Zhe-Sheng Chen

Nilotinib, a BCR-Abl tyrosine kinase inhibitor (TKI), was developed to surmount resistance or intolerance to imatinib in patients with Philadelphia positive chronic myelogenous leukemia. Recently, it was shown that several human multidrug resistance (MDR) ATP-binding cassette (ABC) proteins could be modulated by specific TKIs. MDR can produce cancer chemotherapy failure, typically due to overexpression of ABC transporters, which are involved in the extrusion of therapeutic drugs. Here, we report for the first time that nilotinib potentiates the cytotoxicity of widely used therapeutic substrates of ABCG2, such as mitoxantrone, doxorubicin, and ABCB1 substrates including colchicine, vincristine, and paclitaxel. Nilotinib also significantly enhances the accumulation of paclitaxel in cell lines overexpressing ABCB1. Similarly, nilotinib significantly increases the intracellular accumulation of mitoxantrone in cells transfected with ABCG2. Furthermore, nilotinib produces a concentration-dependent inhibition of the ABCG2-mediated transport of methotrexate (MTX), as well as E(2)17betaG a physiological substrate of ABCG2. Uptake studies in membrane vesicles overexpressing ABCG2 have indicated that nilotinib inhibits ABCG2 similar to other established TKIs as well as fumitremorgin C. Nilotinib is a potent competitive inhibitor of MTX transport by ABCG2 with a K(i) value of 0.69+/-0.083 microM as demonstrated by kinetic analysis of nilotinib. Overall, our results indicate that nilotinib could reverse ABCB1- and ABCG2-mediated MDR by blocking the efflux function of these transporters. These findings may be used to guide the design of present and future clinical trials with nilotinib, elucidating potential pharmacokinetic interactions. Also, these findings may be useful in clinical practice for cancer combination therapy with nilotinib.


Biochemical Pharmacology | 2010

Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance

Yehong Kuang; Tong Shen; Xiang Chen; Kamlesh Sodani; Elizabeth Hopper-Borge; Amit K. Tiwari; Jeferson W.K.K. Lee; Liwu Fu; Zhe-Sheng Chen

In recent years, a number of TKIs (tyrosine kinase inhibitors) targeting epidermal growth factor receptor (EGFR) family have been synthesized and some have been approved for clinical treatment of cancer by the FDA. We recently reported a new pharmacological action of the 4-anilinoquinazoline derived EGFR TKIs, such as lapatinib (Tykerb) and erlotinib (Tarceva), which significantly affect the drug resistance patterns in cells expressing the multidrug resistance (MDR) phenotype. Previously, we showed that lapatinib and erlotinib could inhibit the drug efflux function of P-glycoprotein (P-gp, ABCB1) and ABCG2 transporters. In this study, we determined if these TKIs have the potential to reverse MDR due to the presence of the multidrug resistance protein 7 (MRP7, ABCC10). Our results showed that lapatinib and erlotinib dose-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to several established MRP7 substrates, specifically docetaxel, paclitaxel, vinblastine and vinorelbine, whereas there was no or a less effect on the control vector transfected HEK293 cells. [(3)H]-paclitaxel accumulation and efflux studies demonstrated that lapatinib and erlotinib increased the intracellular accumulation of [(3)H]-paclitaxel and inhibited the efflux of [(3)H]-paclitaxel from MRP7-transfected cells but not in the control cell line. Lapatinib is a more potent inhibitor of MRP7 than erlotinib. In addition, the Western blot analysis revealed that both lapatinib and erlotinib did not significantly affect MRP7 expression. We conclude that the EGFR TKIs, lapatinib and erlotinib reverse MRP7-mediated MDR through inhibition of the drug efflux function, suggesting that an EGFR TKI based combinational therapy may be applicable for chemotherapeutic practice clinically.


Cancer Letters | 2009

RNA interference targeting the CD147 induces apoptosis of multi-drug resistant cancer cells related to XIAP depletion

Yehong Kuang; Xiang Chen; Juan Su; Lisha Wu; Liqiu Liao; Dai Li; Zhe-Sheng Chen; Takuro Kanekura

CD147 (basigin, EMMPRIN) is a widely distributed cell surface glycoprotein that belongs to the Ig superfamily. It is highly expressed on the surface of malignant tumor cells to promote their invasiveness and chemo-resistance. The present study aimed to reveal the anti-apoptotic effect of CD147 on the multi-drug resistant (MDR) phenotype of human oral squamous carcinoma cells (SCC) and its possible pathways. Data presented herein showed that MDR derivative SCC KB/V cell line expressed significantly higher CD147 and X-linked inhibitor of apoptosis (XIAP) than its sensitive counterpart KB cells by RT-PCR and Western blot analysis. Down-regulation of CD147 by transfection with CD147 siRNA resulted in decreased XIAP expression. Flow cytometric analysis and electron microscopic observation revealed differential cell apoptotic status related to CD147 expression. Additionally, chemo-sensitivity to 5-fluorouracil of KB/V was increased by CD147 silencing as measured by MTT colorimetric assay. These results suggest that inhibition of CD147 and subsequent XIAP depletion may have an anti-tumor effect through enhancing the susceptibility of cancer cells to apoptosis.


PLOS ONE | 2009

Imatinib and Nilotinib Reverse Multidrug Resistance in Cancer Cells by Inhibiting the Efflux Activity of the MRP7 (ABCC10)

Tong Shen; Yehong Kuang; Charles R. Ashby; Yu Lei; Angel Chen; Ying Zhou; Xiang Chen; Amit K. Tiwari; Elizabeth Hopper-Borge; Jiangyong Ouyang; Zhe-Sheng Chen

Background One of the major mechanisms that could produce resistance to antineoplastic drugs in cancer cells is the ATP binding cassette (ABC) transporters. The ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering the cytotoxic activity of antineoplastic drugs. One of these transporters, the multiple resistant protein 7 (MRP7, ABCC10), has recently been shown to produce resistance to antineoplastic drugs by increasing the efflux of paclitaxel. In this study, we examined the effects of BCR-Abl tyrosine kinase inhibitors imatinib, nilotinib and dasatinib on the activity and expression of MRP7 in HEK293 cells transfected with MRP7, designated HEK-MRP7-2. Methodology and/or Principal Findings We report for the first time that imatinib and nilotinib reversed MRP7-mediated multidrug resistance. Our MTT assay results indicated that MRP7 expression in HEK-MRP7-2 cells was not significantly altered by incubation with 5 µM of imatinib or nilotinib for up to 72 hours. In addition, imatinib and nilotinib (1-5 µM) produced a significant concentration-dependent reversal of MRP7-mediated multidrug resistance by enhancing the sensitivity of HEK-MRP7-2 cells to paclitaxel and vincristine. Imatinib and nilotinib, at 5 µM, significantly increased the accumulation of [3H]-paclitaxel in HEK-MRP7-2 cells. The incubation of the HEK-MRP7-2 cells with imatinib or nilotinib (5 µM) also significantly inhibited the efflux of paclitaxel. Conclusions Imatinib and nilotinib reverse MRP7-mediated paclitaxel resistance, most likely due to their inhibition of the efflux of paclitaxel via MRP7. These findings suggest that imatinib or nilotinib, in combination with other antineoplastic drugs, may be useful in the treatment of certain resistant cancers.


Steroids | 2011

Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells.

Dan Jian; Dejian Jiang; Juan Su; Wei Chen; Xinglin Hu; Yehong Kuang; Hongfu Xie; Ji Li; Xiang Chen

BACKGROUND It is well known that melanin synthesis in melanoma cells is controlled by melanogenic enzymes, which regulate the cAMP-PKA signaling pathway. Estrogen was previously reported to upregulate melanogenesis that is associated with human skin pigmentation. OBJECTIVE To investigate the influence and mechanism of diethylstilbestrol (DES) on melanogenesis in mouse B16 melanoma cells. METHODS The effects of diethylstilbestrol on cell viability, melanin content, tyrosinase activity, cAMP level, expression of the tyrosinase family and microphthalmia related transcription factor (MITF) were measured in B16 melanoma. Estrogen receptor (ER) expression were detected in B16 melanoma and A375 melanoma. Diethylstilbestrol-induced melanin synthesis were evaluated in the presence and absence of H89 (a PKA-specific inhibitor) and ICI182, 780 (a pure ER antagonist). Tyrosinase activity, the mRNA levels of tyrosinase and MITF were evaluated in the presence and absence of H89. RESULTS In B16 cells, diethylstilbestrol increased cell proliferation, melanin synthesis, tyrosinase activity and expression of the tyrosinase family and MITF. ER expression have not difference in human and mouse melanoma. When ER were inhibited by ICI182, 780, DES-induced melanogenesis was significantly reduced. Diethylstilbestrol enhanced the level of cAMP. The upregulation of melanin content and tyrosinase activity stimulated by diethylstilbestrol was significantly attenuated in the presence of H89. Further, diethylstilbestrol-induced upregulation of tyrosinase and MITF were significantly attenuated when the PKA pathway was blocked. CONCLUSIONS Diethylstilbestrol can enhance melanin synthesis in melanoma cells. This effect is associated with activation of the cAMP-PKA pathway and upregulation of expression and activity of the melanogenesis-related enzyme tyrosinase and MITF.


Cancer Research | 2011

Contribution of Abcc10 (Mrp7) to In Vivo Paclitaxel Resistance as Assessed in Abcc10−/− Mice

Elizabeth Hopper-Borge; Timothy Churchill; Chelsy Paulose; Emmanuelle Nicolas; Joely D. Jacobs; Olivia Ngo; Yehong Kuang; Alex Grinberg; Heiner Westphal; Zhe-Sheng Chen; Andres J. Klein-Szanto; Martin G. Belinsky; Gary D. Kruh

Recently, we reported that the ATP-binding cassette transporter 10 (ABCC10), also known as multidrug resistance protein 7 (MRP7), is able to confer resistance to a variety of anticancer agents, including taxanes. However, the in vivo functions of the pump have not been determined to any extent. In this study, we generated and analyzed Abcc10(-/-) mice to investigate the ability of Abcc10 to function as an endogenous resistance factor. Mouse embryo fibroblasts derived from Abcc10(-/-) mice were hypersensitive to docetaxel, paclitaxel, vincristine, and cytarabine (Ara-C) and exhibited increased cellular drug accumulation, relative to wild-type controls. Abcc10(-/-) null mice treated with paclitaxel exhibited increased lethality associated with neutropenia and marked bone marrow toxicity. In addition, toxicity in spleen and thymus was evident. These findings indicate that Abcc10 is dispensable for health and viability and that it is an endogenous resistance factor for taxanes, other natural product agents, and nucleoside analogues. This is the first demonstration that an ATP-binding cassette transporter other than P-glycoprotein can affect in vivo tissue sensitivity toward taxanes.


Journal of Natural Products | 2009

Sipholane Triterpenoids: Chemistry, Reversal of ABCB1/P-Glycoprotein-Mediated Multidrug Resistance, and Pharmacophore Modeling

Sandeep Jain; Ioana Abraham; Paulo Carvalho; Yehong Kuang; Lamiaa A. Shaala; Diaa T. A. Youssef; Mitchell A. Avery; Zhe-Sheng Chen; Khalid A. El Sayed

This study reports the isolation of nine new terpenoids (2-10), possessing two novel skeletons, from the Red Sea sponge Callyspongia (=Siphonochalina) siphonella. The identity of these novel skeletons was based on X-ray crystallography and extensive spectral analyses. These compounds were evaluated for their ability to reverse P-glycoprotein (P-gp)-mediated multidrug resistance in human epidermoid cancer cells. Sipholenone E (3) was better than sipholenol A (1), a known P-gp modulator from this sponge, in reversing the P-gp-mediated multidrug resistance. Sipholenol L (6) and siphonellinol D (8) were nearly as active as sipholenol A. On the basis of X-ray crystallographic data and the established identity of 3-7, the structure of sipholenol I (11) is revised. A pharmacophore model of three hydrophobic points and two H-bond acceptors was generated for the active sipholane P-gp modulators.


Biochemical Pharmacology | 2010

Marine sponge-derived sipholane triterpenoids reverse P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells

Ioana Abraham; Sandeep Jain; Chung Pu Wu; Mohammad A. Khanfar; Yehong Kuang; Chun Ling Dai; Zhi Shi; Xiang Chen; Liwu Fu; Suresh V. Ambudkar; Khalid A. El Sayed; Zhe-Sheng Chen

Previously, we reported sipholenol A, a sipholane triterpenoid from the Red Sea sponge Callyspongia siphonella, as a potent reversal of multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp). Through extensive screening of several related sipholane triterpenoids that have been isolated from the same sponge, we identified sipholenone E, sipholenol L and siphonellinol D as potent reversals of MDR in cancer cells. These compounds enhanced the cytotoxicity of several P-gp substrate anticancer drugs, including colchicine, vinblastine and paclitaxel, and significantly reversed the MDR-phenotype in P-gp-overexpressing MDR cancer cells KB-C2 in a dose-dependent manner. Moreover, these three sipholanes had no effect on the response to cytotoxic agents in cells lacking P-gp expression or expressing MRP1 (ABCC1) or MRP7 (ABCC10) or breast cancer resistance protein (BCRP/ABCG2). All three sipholanes (IC(50) >50 μM) were not toxic to all the cell lines that were used. [(3)H]-Paclitaxel accumulation and efflux studies demonstrated that all three triterpenoids time-dependently increased the intracellular accumulation of [(3)H]-paclitaxel by directly inhibiting P-gp-mediated drug efflux. Sipholanes also inhibited calcein-AM transport from P-gp-overexpressing cells. The Western blot analysis revealed that these three triterpenoids did not alter the expression of P-gp. However, they stimulated P-gp ATPase activity in a concentration-dependent manner and inhibited the photolabeling of this transporter with its transport substrate [(125)I]-iodoarylazidoprazosin. In silico molecular docking aided the virtual identification of ligand binding sites of these compounds. In conclusion, sipholane triterpenoids efficiently inhibit the function of P-gp through direct interactions and may represent potential reversal agents for the treatment of MDR.


Journal of Proteome Research | 2008

Proteome Analysis of Multidrug Resistance of Human Oral Squamous Carcinoma Cells Using CD147 Silencing

Yehong Kuang; Xiang Chen; Juan Su; Lisha Wu; Ji Li; Jing Chang; Ying Qiu; Zhe-Sheng Chen; Takuro Kanekura

There is a correlation between the multidrug-resistance (MDR) of cancer cells and their enhanced invasive or metastatic potential. We studied the expression of CD147, a plasma membrane glycoprotein that plays a key role in tumor metastasis by stimulating the production of matrix metalloproteinases (MMPs), in sensitive human oral squamous KB and MDR derivative KB/V cells. Reverse transcription-PCR and flow cytometric analysis revealed that KB/V cells expressed CD147 at significantly higher levels than their parental KB cells. Using stable RNA interference, we succeeded in establishing a CD147 knock-down KB/V cell line (KB/VsiCD147). MTT colorimetric assay showed an increase in the chemosensitivity to vincristine (VCR), all transretinoic acid (ATRA), taxol, and 5-fluorouracil (5-Fu) of KB/VsiCD147 cells. Proteome analysis of KB, KB/V, and KB/VsiCD147 cell lines identified 21 differently expressed proteins. The enhanced expression of representative active proteins, GRP75 and CyPA, was confirmed by Western blotting and RT-PCR. In addition, pretreatment of KB/V cells with a CyPA-binding immunosuppressive drug, cyclosporine A (CsA), enhanced their chemosensitivity to VCR and 5-Fu. We document an abundance of molecules that interact with CD147 in the MDR of human oral squamous carcinoma cells. Additional studies are needed to investigate these novel target proteins of CD147.


Cancer Letters | 2013

CD147 mediates chemoresistance in breast cancer via ABCG2 by affecting its cellular localization and dimerization.

Shuangyuan Zhou; Liqiu Liao; Chen Chen; Weiqi Zeng; Shuang Liu; Juan Su; Shuang Zhao; Mingliang Chen; Yehong Kuang; Xiang Chen; Jie Li

CD147 and ABCG2 both have been reported to mediate Multidrug resistance (MDR) in breast cancer. Recent study demonstrates that CD147 could form a complex with ABCG2 on the cell membrane in primary effusion lymphoma. However, whether these two molecules regulate each other in breast cancer and result in MDR is not clear. We established four MCF-7 cell lines transfected with CD147 and/or ABCG2 and found that CD147 could increase the expression and dimerization of ABCG2, affect its cellular localization and regulate its drug transporter function. The findings derived from cells were confirmed subsequently in clinic samples of chemotherapy-sensitive/resistant breast cancer.

Collaboration


Dive into the Yehong Kuang's collaboration.

Top Co-Authors

Avatar

Xiang Chen

Central South University

View shared research outputs
Top Co-Authors

Avatar

Juan Su

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuang Zhao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Jianglin Zhang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Lisha Wu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Jie Li

Central South University

View shared research outputs
Top Co-Authors

Avatar

Mingliang Chen

Central South University

View shared research outputs
Top Co-Authors

Avatar

Wu Zhu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Fangfang Li

Central South University

View shared research outputs
Researchain Logo
Decentralizing Knowledge