Yehya Alattal
King Saud University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yehya Alattal.
International Journal of Medical Sciences | 2012
Noori S. Al-Waili; Ahmad Al-Ghamdi; Mohammad Javed Ansari; Yehya Alattal; Khelod Salom
Background: Propolis and honey are natural bee products with wide range of biological and medicinal properties. The study investigated antimicrobial activity of ethyl alcohol extraction of propolis collected from Saudi Arabia (EEPS) and from Egypt (EEPE), and their synergistic effect when used with honey. Single and polymicrobial cultures of antibiotic resistant human pathogens were tested. Material and methods; Staphylococcus aureus (S. aureus),), Escherichia coli (E. coli) and Candida albicans (C.albicans) were cultured in 10-100% (v/v) honey diluted in broth, or 0.08-1.0% (weight/volume) EEPS and EEPE diluted in broth. Four types of polymicrobial cultures were prepared by culturing the isolates with each other in broth (control) and broth containing various concentrations of honey or propolis. Microbial growth was assessed on solid plate media after 24 h incubation. Results; EEPS and EEPE inhibited antibiotic resistant E.coli, and S.aureus, and C.albicans in single and polymicrobial cultures. S.aureus became more susceptible when it was cultured with E.coli or C.albicans or when all cultured together. C.albicans became more susceptible when it was cultured with S.aureus or with E.coli and S. aureus together. The presence of ethyl alcohol or honey potentiated antimicrobial effect of propolis toward entire microbes tested in single or polymicrobial cultures. EEPS had lower MIC toward E.coli and C.albicans than EEPE. When propolis was mixed with honey, EEPS showed lower MIC than EEPE. In addition, honey showed lower MIC toward entire microbes when mixed with EEPS than when it was mixed with EEPE. Conclusion; 1) propolis prevents the growth of the microorganisms in single and mixed microbial cultures, and has synergistic effect when used with honey or ethyl alcohol, 2) the antimicrobial property of propolis varies with geographical origin, and 3) this study will pave the way to isolate active ingredients from honey and propolis to be further tested individually or in combination against human resistant infections.
Archives of Medical Research | 2013
Mohammad Javed Ansari; Ahmad Al-Ghamdi; Salma Usmani; Noori S. Al-Waili; Deepak Sharma; Adgaba Nuru; Yehya Alattal
BACKGROUND AND AIMS Candida species, especially Candida albicans, are major fungal pathogens of humans that are capable of causing superficial mucosal infections and systemic infections in humans. The aim of this study was to evaluate the jujube (Zizyphus spina-christi) honey for its in vitro inhibitory activity against pre-formed biofilm and its interference with the biofilm formation of C. albicans. METHODS The XTT reduction assay, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to determine the inhibitory effect of Jujube honey on C. albicans biofilm. Changes in the infrared spectrum after treatment with honey were also determined by Fourier transform infrared (FTIR) spectroscopy. RESULTS Jujube honey affects biofilms by decreasing the size of mature biofilms and by disruption of their structure. At a concentration of 40% w/v, it interferes with formation of C. albicans biofilms and disrupts established biofilms. The SEM and AFM results indicated that this type of honey affected the cellular morphology of C. albicans and decreased biofilm thickness. CONCLUSIONS The present findings show that jujube honey has antifungal properties against C. albicans and has the ability to inhibit the formation of C. albicans biofilms and disrupt established biofilms.
Archives of Medical Research | 2013
Noori S. Al-Waili; Ahmad Al Khazim Al Ghamdi; Mohammad Javed Ansari; Yehya Alattal; Aarif Al-Mubarak; Khelod Salom
BACKGROUND AN AIMS Antibiotic multiresistant microbes represent a challenging problem. Because honey has a potent antibacterial property, the antimicrobial effects of different honey samples against multiresistant pathogens and their compositions were investigated. METHODS Five honey samples were used: Talah, Dhahian, Sumra-1, Sidr, and Sumra-2. Samples were analyzed to determine chemical composition such as fructose, glucose, sucrose, pH, total flavonoids, total phenolics, hydrogen peroxide concentration, minerals and trace elements. Antimicrobial activities of the samples against 17 (16 were multiresistant) human pathogenic bacteria and three types of fungi were studied. Specimens of the isolates were cultured into 10 mL of 10-100% (volume/volume) honey diluted in broth. Microbial growth was assessed on a solid plate media after 24 h and 72 h incubation. RESULTS The composition of honey samples varied considerably. Sumra 1 and 2 contained the highest level of flavonoids and phenolics and the lowest level of hydrogen peroxide, whereas Dhahian honey contained the highest level of hydrogen peroxide. Sixteen pathogens were antibiotic multiresistant. A single dose of each honey sample inhibited all the pathogens tested after 24 h and 72 h incubation. The most sensitive pathogens were Aspergillus nidulans, Salmonella typhimurum and Staphylococcus epidermidis (S. epidermidis). Although there was no statistically significant difference in the effectiveness of honey samples, the most effective honey against bacteria was Talah and against fungi were Dhahian and Sumra-2. CONCLUSIONS Various honey samples collected from different geographical areas and plant origins showed almost similar antimicrobial activities against multiresistant pathogens despite considerable variation in their composition. Honey may represent an alternative candidate to be tested as part of management of drug multiresistant pathogens.
Biologia Plantarum | 2013
Mohammad Javed Ansari; Ahmad Al-Ghamdi; R. Kumar; Salma Usmani; Yehya Alattal; Adgaba Nuru; Abdelsalam A. Mohamed; Kuldeep Singh; Harcharan Singh Dhaliwal
Diploid wheat Triticum monococcum L. is a model plant for wheat functional genomics. Chlorophyll-deficient mutant (clm1) was identified during manual screening of the ethyl methanesulphonate (EMS)-treated M2 progenies of T. monococcum accession pau14087 in the field. The clm1 mutant, due to significantly decreased chlorophyll content compared with the wild-type (WT), exhibited pale yellow leaves which slowly recovered to green before flowering. The clm1 mutant showed early flowering, reduced number of tillers, trichome length and density, and different shape as compared with the WT. At the same time, clm1 mutant culm had more chlorophyll-containing parenchymatous tissues compared to WT, presumably to absorb more sunlight for photosynthesis. Genetic analysis indicated that the clm1 mutation was monogenic recessive. The clm1 mutant was mapped between Xgwm473 and Xwmc96 SSR markers, with genetic distances of 2.1 and 2.6 cM, respectively, on the 7AmL chromosome.
Saudi Journal of Biological Sciences | 2017
Mohammad Javed Ansari; Ahmad Al-Ghamdi; Adgaba Nuru; Khalid Ali Khan; Yehya Alattal
The aim of the study was to detect the infection level of honey bees with Nosema apis and/or Nosema ceranae using microscopic and molecular analysis from indigenous honeybee race of eight Saudi Arabian geographical regions. A detailed survey was conducted and fifty apiaries were chosen at random from these locations. Infection level was determined both by microscope and Multiplex-PCR and data were analyzed using bioinformatics tools and phylogenetic analysis. Result showed that N. ceranae was the only species infecting indigenous honeybee colonies in Saudi Arabia. As determined by microscope, Nosema spores were found to be in 20.59% of total samples colonies, while 58% of the samples evaluated by PCR were found to be positive for N. ceranae, with the highest prevalence in Al-Bahah, a tropical wet and dry climatic region, whereas low prevalence was found in the regions with hot arid climate. Honeybees from all eight locations surveyed were positive for N. ceranae. This is the first report about the N. ceranae detection, contamination level and distribution pattern in Saudi Arabia.
Saudi Journal of Biological Sciences | 2017
Mohammad Javed Ansari; Ahmad Al-Ghamdi; Adgaba Nuru; Ashraf M. Ahmed; Tahany H. Ayaad; Abdulaziz S. Alqarni; Yehya Alattal; Noori Al-Waili
A large-scale field survey was conducted to screen major Saudi Arabian beekeeping locations for infection by Melissococcus plutonius. M. plutonius is one of the major bacterial pathogens of honeybee broods and is the causative agent of European Foulbrood disease (EFB). Larvae from samples suspected of infection were collected from different apiaries and homogenized in phosphate buffered saline (PBS). Bacteria were isolated on MYPGP agar medium. Two bacterial isolates, ksuMP7 and ksuMP9 (16S rRNA GenBank accession numbers, KX417565 and KX417566, respectively), were subjected to molecular identification using M. plutonius -specific primers, a BLAST sequence analysis revealed that the two isolates were M. plutonius with more than 98% sequence identity. The molecular detection of M. plutonius from honeybee is the first recorded incidence of this pathogen in Saudi Arabia. This study emphasizes the need for official authorities to take immediate steps toward treating and limiting the spread of this disease throughout the country.
Zoology in The Middle East | 2014
Yehya Alattal; Ahmad Al Khazim Al Ghamdi; Mohamad Al Sharhi; Stephan Fuchs
The morphometry of native honeybees from Saudi Arabia was analysed and compared with 7 Apis mellifera subspecies, based on 198 colony samples from 36 locations. Twenty five standard morphological characters were evaluated, and samples were compared with seven reference honeybee subspecies (Apis mellifera carnica, A. m. ligustica, A. m. meda, A. m. syriaca, A. m. lamarckii, A. m. litorea and A. m. jemenitica) obtained from the Oberursel Data Bank (Institut für Bienenkunde, Frankfurt University, Germany). Results confirmed that samples from Saudi Arabia are very similar to samples from the subspecies A. m. jemenitica (Ruttner, 1967), previously described from Oman, Yemen and Saudi Arabia. Samples were well-separated from the other subspecies, but the distinction was less in relation to A. m. litorea. While locally kept bees were well-separated, samples from migratory beekeeping showed broader variation and were less clearly separated, indicating the influence of ingression and hybridization with introduced honeybee subspecies.
Saudi Journal of Biological Sciences | 2017
Ahmad Al-Ghamdi; Nowfal I.M. Bayaqoob; Ahmed I. Rushdi; Yehya Alattal; Bernd R.T. Simoneit; Aarif H. El-Mubarak; Khalid F. Al-Mutlaq
Propolis is a gummy material made by honeybees for protecting their hives from bacteria and fungi. The main objective of this study is to determine the chemical compositions and concentrations of organic compounds in the extractable organic matter (EOM) of propolis samples collected from four different regions in Yemen. The propolis samples were extracted with a mixture of dichloromethane and methanol and analyzed by gas chromatography–mass spectrometry (GC–MS). The results showed that the total extract yields ranged from 34% to 67% (mean = 55.5 ± 12.4%). The major compounds were triterpenoids (254 ± 188 mg g−1, mainly α-, β-amyryl and dammaradienyl acetates), n-alkenes (145 ± 89 mg g−1), n-alkanes (65 ± 29 mg g−1), n-alkanoic acids (40 ± 26 mg g−1), long chain wax esters (38 ± 25 mg g−1), n-alkanols (8 ± 3 mg g−1) and methyl n-alkanoates (6 ± 4 mg g−1). The variation in the propolis chemical compositions is apparently related to the different plant sources. The compounds of these propolis samples indicate that they are potential sources of natural bio-active compounds for biological and pharmacological applications.
Saudi Journal of Biological Sciences | 2018
Ramzi Al-Sarhan; Nuru Adgaba; Yilma Tadesse; Yehya Alattal; Amal A. Al-Abbadi; Arif Single; Ahmad Al-Ghamdi
The current study aimed to investigate the important reproductive biology and morphology of A.m. jemenitica queens and drones through measuring the weight of virgin and mated queens, size and weight of spermathecae, weight of ovaries, number of ovarioles, quantity and viability of semen in queen and drones. Accordingly, the average weights of 0.139 ± 0.01 g and 0.143 ± 0.013 g recorded for virgin and mated queens respectively. The sizes of spermathecae were 1.248 ± 0.103 mm and 1.25 ± 0.022 mm for virgin and mated queens respectively. The mean weight of ovaries was 0.013 ± 0.003 g and the numbers of ovarioles varied from 124 to 163 with the mean of 142.9 ± 9.47 and with no significant difference between virgin and mated queens. The average number of stored sperm per spermathecae of mated queen was estimated to be 4.202 ± 0.613 million with the viability of 80.39%. The average number of sperm per drone recorded was 8,763,950 ± 1,633,203.15 with viability of 79.54 ± 6.70%. In general, the current study revealed that the values recorded for reproductive biology and morphological characters of A. m. jemenitica queens and drones were relatively lower than values recorded for other Apis mellifera races. This mainly could be associated with the body size of the race which is known to be the smallest race among A. mellifera races. Moreover, the harsh environmental conditions of the regions, high temperature, low humidity and limited resources may have contributed for the smaller biological and morphological values. The information will serve as a base in future selection and breeding of program of the race.
Saudi Journal of Biological Sciences | 2017
Yehya Alattal; Ahmad Al-Ghamdi; Arif Single; Mohammad Javed Ansari; Hussien Alkathiri
Varroa mite is the most destructive pest to bee colonies worldwide. In Saudi Arabia, preliminary data indicated high infestation levels in the exotic honeybee colonies; such as Apis mellifera carnica and Apis mellifera ligustica, compared to native honeybee subspecies Apis mellifera jemenitica, which may imply higher tolerance to Varroasis. In this study, fertility and reproductive rate of Varroa mite, Varroa destructor, in capped brood cells of the native honeybee subspecies were investigated and compared with an exotic honeybee subspecies, A. m. carnica. Mite fertility was almost alike (87.5% and 89.4%) in the native and craniolan colonies respectively. Similarly, results did not show significant differences in reproduction rate between both subspecies (F = 0.66, Pr > F = 0.42). Number of adult Varroa daughters per fertile mother mite was 2.0 and 2.1 for native and craniolan honeybee subspecies respectively. This may indicate that mechanisms of keeping low infestation rates in the native honeybee colonies are not associated with Varroa reproduction. Therefore, potential factors of keeping lower Varroa infestation rates in native honey bee subspecies should be further investigated.