Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yekaterina Y. Zaytseva is active.

Publication


Featured researches published by Yekaterina Y. Zaytseva.


Cancer Letters | 2012

mTOR inhibitors in cancer therapy

Yekaterina Y. Zaytseva; Joseph D. Valentino; Pat Gulhati; B. Mark Evers

The mammalian target of rapamycin (mTOR) plays a key role in regulation of cellular metabolism, growth, and proliferation. The frequent hyperactivation of mTOR signaling makes it an attractive target for therapeutic intervention and has driven the development of a number of mTOR inhibitors. Encouraging data from preclinical studies have resulted in initiation of multiple clinical trials. Furthermore, combinational strategies are being studied in an effort to overcome resistance and enhance efficacy. Although additional studies are required to determine their specific role in the clinical setting, mTOR inhibitors remain a promising therapeutic option for the treatment of cancer.


Cancer Research | 2012

Inhibition of Fatty Acid Synthase Attenuates CD44-Associated Signaling and Reduces Metastasis in Colorectal Cancer

Yekaterina Y. Zaytseva; Piotr G. Rychahou; Pat Gulhati; Victoria A. Elliott; William Mustain; Kathleen L. O'Connor; Andrew J. Morris; Manjula Sunkara; Heidi L. Weiss; Eun Y. Lee; B.M. Evers

Fatty acid synthase (FASN) and ATP-citrate lyase, key enzymes of de novo lipogenesis, are significantly upregulated and activated in many cancers and portend poor prognosis. Even though the role of lipogenesis in providing proliferative and survival advantages to cancer cells has been described, the impact of aberrant activation of lipogenic enzymes on cancer progression remains unknown. In this study, we found that elevated expression of FASN is associated with advanced stages of colorectal cancer (CRC) and liver metastasis, suggesting that it may play a role in progression of CRC to metastatic disease. Targeted inhibition of lipogenic enzymes abolished expression of CD44, a transmembrane protein associated with metastases in several cancers including CRC. In addition, inhibition of lipogenic enzymes and reduced expression of CD44 attenuated the activation of MET, Akt, FAK, and paxillin, which are known to regulate adhesion, migration, and invasion. These changes were consistent with an observed decrease in migration and adhesion of CRC cells in functional assays and with reorganization of actin cytoskeleton upon FASN inhibition. Despite the modest effect of FASN inhibition on tumor growth in xenografts, attenuation of lipogenesis completely abolished establishment of hepatic metastasis and formation of secondary metastasis. Together, our findings suggest that targeting de novo lipogenesis may be a potential treatment strategy for advanced CRC.


Nature | 2016

An obligatory role for neurotensin in high-fat-diet-induced obesity

Jing Li; Jun Song; Yekaterina Y. Zaytseva; Yajuan Liu; Piotr G. Rychahou; Kai Jiang; Marlene E. Starr; Ji Tae Kim; Jennifer W. Harris; Frederique Yiannikouris; Wendy S. Katz; Peter Nilsson; Marju Orho-Melander; Jing Chen; Haining Zhu; Timothy Fahrenholz; Richard M. Higashi; Tianyan Gao; Andrew J. Morris; Lisa A. Cassis; Teresa W.-M. Fan; Heidi L. Weiss; Paul R. Dobner; Olle Melander; Jianhang Jia; B. Mark Evers

Obesity and its associated comorbidities (for example, diabetes mellitus and hepatic steatosis) contribute to approximately 2.5 million deaths annually and are among the most prevalent and challenging conditions confronting the medical profession. Neurotensin (NT; also known as NTS), a 13-amino-acid peptide predominantly localized in specialized enteroendocrine cells of the small intestine and released by fat ingestion, facilitates fatty acid translocation in rat intestine, and stimulates the growth of various cancers. The effects of NT are mediated through three known NT receptors (NTR1, 2 and 3; also known as NTSR1, 2, and NTSR3, respectively). Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with increased risk of diabetes, cardiovascular disease and mortality; however, a role for NT as a causative factor in these diseases is unknown. Here we show that NT-deficient mice demonstrate significantly reduced intestinal fat absorption and are protected from obesity, hepatic steatosis and insulin resistance associated with high fat consumption. We further demonstrate that NT attenuates the activation of AMP-activated protein kinase (AMPK) and stimulates fatty acid absorption in mice and in cultured intestinal cells, and that this occurs through a mechanism involving NTR1 and NTR3 (also known as sortilin). Consistent with the findings in mice, expression of NT in Drosophila midgut enteroendocrine cells results in increased lipid accumulation in the midgut, fat body, and oenocytes (specialized hepatocyte-like cells) and decreased AMPK activation. Remarkably, in humans, we show that both obese and insulin-resistant subjects have elevated plasma concentrations of pro-NT, and in longitudinal studies among non-obese subjects, high levels of pro-NT denote a doubling of the risk of developing obesity later in life. Our findings directly link NT with increased fat absorption and obesity and suggest that NT may provide a prognostic marker of future obesity and a potential target for prevention and treatment.


ACS Nano | 2015

Delivery of RNA Nanoparticles into Colorectal Cancer Metastases Following Systemic Administration

Piotr G. Rychahou; Farzin Haque; Yi Shu; Yekaterina Y. Zaytseva; Heidi L. Weiss; Eun Y. Lee; William Mustain; Joseph Valentino; Peixuan Guo; B. Mark Evers

The majority of deaths from all cancers, including colorectal cancer (CRC), is a result of tumor metastasis to distant organs. To date, an effective and safe system capable of exclusively targeting metastatic cancers that have spread to distant organs or lymph nodes does not exist. Here, we constructed multifunctional RNA nanoparticles, derived from the three-way junction (3WJ) of bacteriophage phi29 motor pRNA, to target metastatic cancer cells in a clinically relevant mouse model of CRC metastasis. The RNA nanoparticles demonstrated metastatic tumor homing without accumulation in normal organ tissues surrounding metastatic tumors. The RNA nanoparticles simultaneously targeted CRC cancer cells in major sites of metastasis, such as liver, lymph nodes, and lung. Our results demonstrate the therapeutic potential of these RNA nanoparticles as a delivery system for the treatment of CRC metastasis.


Molecular Cancer | 2008

Down-regulation of PPARgamma1 suppresses cell growth and induces apoptosis in MCF-7 breast cancer cells

Yekaterina Y. Zaytseva; Xin Wang; R. Chase Southard; Natalie K. Wallis; Michael W. Kilgore

BackgroundPeroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear hormone receptor superfamily and is highly expressed in many human tumors including breast cancer. PPARγ has been identified as a potential target for breast cancer therapy based on the fact that its activation by synthetic ligands affects the differentiation, proliferation, and apoptosis of cancer cells. However, the controversial nature of current studies and disappointing results from clinical trials raise questions about the contribution of PPARγ signaling in breast cancer development in the absence of stimulation by exogenous ligands. Recent reports from both in vitro and in vivo studies are inconsistent and suggest that endogenous activation of PPARγ plays a much more complex role in initiation and progression of cancer than previously thought.ResultsWe have previously demonstrated that an increase in expression of PPARγ1 in MCF-7 breast cancer cells is driven by a tumor-specific promoter. Myc-associated zinc finger protein (MAZ) was identified as a transcriptional mediator of PPARγ1 expression in these cells. In this study, using RNA interference (RNAi) to inhibit PPARγ1 expression directly or via down-regulation of MAZ, we report for the first time that a decrease in PPARγ1 expression results in reduced cellular proliferation in MCF-7 breast cancer cells. Furthermore, we demonstrate that these changes in proliferation are associated with a significant decrease in cell transition from G1 to the S phase. Using a dominant-negative mutant of PPARγ1, Δ462, we confirmed that PPARγ1 acts as a pro-survival factor and showed that this phenomenon is not limited to MCF-7 cells. Finally, we demonstrate that down-regulation of PPARγ1 expression leads to an induction of apoptosis in MCF-7 cells, confirmed by analyzing Bcl-2 expression and PARP-1 cleavage.ConclusionThus, these findings suggest that an increase in PPARγ1 signaling observed in breast cancer contributes to an imbalance between proliferation and apoptosis, and may be an important hallmark of breast tumorigenesis. The results presented here also warrant further investigation regarding the use of PPARγ ligands in patients who are predisposed or already diagnosed with breast cancer.


Clinical Cancer Research | 2014

Cotargeting the PI3K and RAS Pathways for the Treatment of Neuroendocrine Tumors

Joseph D. Valentino; Jing Li; Yekaterina Y. Zaytseva; W. Conan Mustain; Victoria A. Elliott; Ji Tae Kim; Jennifer W. Harris; Katherine E. Campbell; Heidi L. Weiss; Chi Wang; Jun Song; Lowell Anthony; Courtney M. Townsend; B. Mark Evers

Background: The precise involvement of the PI3K/mTOR and RAS/MEK pathways in carcinoid tumors is not well defined. Therefore, the purpose of our study was to evaluate the role these pathways play in carcinoid cell proliferation, apoptosis, and secretion and to determine the effects of combined treatment on carcinoid tumor inhibition. Methods: The human neuroendocrine cell lines BON (pancreatic carcinoid), NCI-H727 (lung carcinoid), and QGP-1 (somatostatinoma) were treated with either the pan-PI3K inhibitor, BKM120, or the dual PI3K–mTOR inhibitor, BEZ235, alone or in combination with the MEK inhibitor, PD0325901; proliferation, apoptosis, and protein expression were assessed. Peptide secretion was evaluated in BON and QGP-1 cells. The antiproliferative effect of BEZ235, alone or combined with PD0325901, was then tested in vivo. Results: Both BKM120 and BEZ235 decreased proliferation and increased apoptosis; combination with PD0325901 significantly enhanced the antineoplastic effects of either treatment alone. In contrast, neurotensin peptide secretion was markedly stimulated with BKM120 treatment, but not BEZ235. The combination of BEZ235 + PD0325901 significantly inhibited the growth of BON xenografts without systemic toxicity. Conclusions: Both BKM120 and BEZ235 effectively inhibited neuroendocrine tumor (NET) cell proliferation and stimulated apoptosis. However, inhibition of the PI3K pathway alone with BKM120 significantly stimulated neurotensin peptide secretion; this did not occur with the dual inhibition of both PI3K and mTOR using BEZ235 suggesting that this would be a more effective treatment regimen for NETs. Moreover, the combination of BEZ235 and the MEK inhibitor PD0325901 was a safe and more effective therapy in vivo compared with single agents alone. Clin Cancer Res; 20(5); 1212–22. ©2014 AACR.


Cell Death and Disease | 2017

Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer

Yang-An Wen; Xiaopeng Xing; Jennifer W. Harris; Yekaterina Y. Zaytseva; Mihail I. Mitov; Dana Napier; Heidi L. Weiss; B. Mark Evers; Tianyan Gao

Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metabolism to support tumor growth and survival. Abundant adipocytes were found in close association with invasive tumor cells in colon cancer patients. Co-culture of adipocytes with colon cancer cells led to a transfer of free fatty acids that released from the adipocytes to the cancer cells. Uptake of fatty acids allowed the cancer cells to survive nutrient deprivation conditions by upregulating mitochondrial fatty acid β-oxidation. Mechanistically, co-culture of adipocytes or treating cells with fatty acids induced autophagy in colon cancer cells as a result of AMPK activation. Inhibition of autophagy attenuated the ability of cancer cells to utilize fatty acids and blocked the growth-promoting effect of adipocytes. In addition, we found that adipocytes stimulated the expression of genes associated with cancer stem cells and downregulated genes associated with intestinal epithelial cell differentiation in primary colon cancer cells and mouse tumor organoids. Importantly, the presence of adipocytes promoted the growth of xenograft tumors in vivo. Taken together, our results show that adipocytes in the tumor microenvironment serve as an energy provider and a metabolic regulator to promote the growth and survival of colon cancer cells.


Breast Cancer Research and Treatment | 2008

Transactivation of ERα by Rosiglitazone induces proliferation in breast cancer cells

Dominique R. Talbert; Clinton D. Allred; Yekaterina Y. Zaytseva; Michael W. Kilgore

In the present study, we demonstrate that Rosiglitazone (Rosi), a thiazolidinedione and PPARγ agonist, induces ERE (Estrogen Receptor Response Element) reporter activity, pS2 (an endogenous ER gene target) expression, and proliferation of ER positive breast cancer (MCF-7) cells. By performing a dose–response assay, we determined that high concentrations of Rosi inhibit proliferation, while low concentrations of Rosi induce proliferation. Using the anti-estrogen ICI, ER negative breast cancer (MDA-MB-231) cells, and a prostate cancer cell line (22Rv1) deficient in both ERα and PPARγ, we determined that Rosiglitazone-induced ERE reporter activation and proliferation is through an ERα dependent mechanism. Rosiglitazone-induced ERE activation is also dependent on activation of the Extracellular Signal-Regulated Kinase–Mitogen Activated Protein Kinase (ERK–MAPK) pathway, since it is inhibited by co-treatment with U0126, a specific inhibitor of this pathway. We also demonstrate that when ERα and PPARγ are both present, they compete for Rosi, inhibiting each others transactivation. To begin to unravel the pharmacological mechanism of Rosi-induced ER activation, sub-maximally effective concentrations of E2 were used in combination with increasing concentrations of Rosi in luciferase reporter assays. From these assays it appears that E2 and Rosi both activate ERα via similar pharmacological mechanisms. Furthermore sub-maximally effective concentrations of E2 and Rosi additively increase both ERE reporter activity and MCF-7 cell proliferation. The results of this study may have clinical relevancy for Rosi’s use both as an anti-diabetic in post-menopausal women and as an anti-cancer drug in women with ER positive breast cancer


Carcinogenesis | 2012

Sorafenib enhances the therapeutic efficacy of rapamycin in colorectal cancers harboring oncogenic KRAS and PIK3CA

Pat Gulhati; Yekaterina Y. Zaytseva; Joseph D. Valentino; Payton D. Stevens; Ji Tae Kim; Takehiko Sasazuki; Senji Shirasawa; Eun Y. Lee; Heidi L. Weiss; Jianli Dong; Tianyan Gao; B. Mark Evers

Activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling is associated with tumorigenesis and metastasis of colorectal cancer (CRC). The mammalian target of rapamycin (mTOR) kinase, a downstream effector of PI3K/Akt signaling, regulates tumorigenesis and metastasis of CRCs, indicating that mTOR inhibition may have therapeutic potential. Notwithstanding, many cancers, including CRC, demonstrate resistance to the antitumorigenic effects of rapamycin. In this study, we show that inhibition of mTORC1 with rapamycin leads to feedback activation of PI3K/Akt and Ras-MAPK signaling, resulting in cell survival and possible contribution to rapamycin resistance. Combination with the multikinase inhibitor, sorafenib, abrogates rapamycin-induced activation of PI3K/Akt and Ras-MAPK signaling pathways. Combination of rapamycin with sorafenib synergistically inhibits proliferation of CRC cells. CRCs harboring coexistent KRAS and PIK3CA mutations are partially sensitive to either rapamycin or sorafenib monotherapy, but highly sensitive to combination treatment with rapamycin and sorafenib. Combination with sorafenib enhances therapeutic efficacy of rapamycin on induction of apoptosis and inhibition of cell-cycle progression, migration and invasion of CRCs. We demonstrate efficacy and safety of concomitant treatment with rapamycin and sorafenib at inhibiting growth of xenografts from CRC cells with coexistent mutations in KRAS and PIK3CA. The efficacy and tolerability of combined treatment with rapamycin and sorafenib provides rationale for use in treating CRC patients, particularly those with tumors harboring coexistent KRAS and PIK3CA mutations.


International Journal of Cancer | 2015

Neurotensin, a novel target of Wnt/β-catenin pathway, promotes growth of neuroendocrine tumor cells

Ji Tae Kim; Chunming Liu; Yekaterina Y. Zaytseva; Heidi L. Weiss; Courtney M. Townsend; B. Mark Evers

Wnt/β‐catenin signaling plays a pivotal role in regulating cell growth and differentiation by activation of the β‐catenin/T‐cell factor (TCF) complex and subsequent regulation of a set of target genes that have one or more TCF‐binding elements (TBEs). Hyperactivation of this pathway has been implicated in numerous malignancies including human neuroendocrine tumors (NETs). Neurotensin (NT), an intestinal hormone, induces proliferation of several gastrointestinal (GI) cancers including cancers of the pancreas and colon. Here, we analyzed the human NT promoter in silico and found at least four consensus TBEs within the proximal promoter region. Using a combination of ChIP and luciferase reporter assays, we identified one TBE (located ∼900 bp proximal from the transcription start site) that was immunoprecipitated efficiently by TCF4‐targeting antibody; mutation of this site attenuated the responsiveness to β‐catenin. We also confirmed that the promoter activity and the mRNA and protein expression levels of NT were increased by various Wnt pathway activators and decreased by Wnt inhibitors in NET cell lines BON and QGP‐1, which express and secrete NT. Similarly, the intracellular content and secretion of NT were induced by Wnt3a in these cells. Finally, inhibition of NT signaling suppressed cell proliferation and anchorage‐independent growth and decreased expression levels of growth‐related proteins in NET cells. Our results indicate that NT is a direct target of the Wnt/β‐catenin pathway and may be a mediator for NET cell growth.

Collaboration


Dive into the Yekaterina Y. Zaytseva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun Y. Lee

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Tianyan Gao

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Tae Kim

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi Wang

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge