Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yelena A. Arnautova is active.

Publication


Featured researches published by Yelena A. Arnautova.


Acta Crystallographica Section B-structural Science | 2009

Significant progress in predicting the crystal structures of small organic molecules – a report on the fourth blind test

Graeme M. Day; Timothy G. Cooper; Aurora J. Cruz-Cabeza; Katarzyna E. Hejczyk; Herman L. Ammon; Stephan X. M. Boerrigter; Jeffrey S. Tan; Raffaele Guido Della Valle; Elisabetta Venuti; Jovan Jose; Shridhar R. Gadre; Gautam R. Desiraju; Tejender S. Thakur; Bouke P. van Eijck; Julio C. Facelli; Victor E. Bazterra; Marta B. Ferraro; D.W.M. Hofmann; Marcus A. Neumann; Frank J. J. Leusen; John Kendrick; Sarah L. Price; Alston J. Misquitta; Panagiotis G. Karamertzanis; Gareth W. A. Welch; Harold A. Scheraga; Yelena A. Arnautova; Martin U. Schmidt; Jacco van de Streek; Alexandra K. Wolf

We report on the organization and outcome of the fourth blind test of crystal structure prediction, an international collaborative project organized to evaluate the present state in computational methods of predicting the crystal structures of small organic molecules. There were 14 research groups which took part, using a variety of methods to generate and rank the most likely crystal structures for four target systems: three single-component crystal structures and a 1:1 cocrystal. Participants were challenged to predict the crystal structures of the four systems, given only their molecular diagrams, while the recently determined but as-yet unpublished crystal structures were withheld by an independent referee. Three predictions were allowed for each system. The results demonstrate a dramatic improvement in rates of success over previous blind tests; in total, there were 13 successful predictions and, for each of the four targets, at least two groups correctly predicted the observed crystal structure. The successes include one participating group who correctly predicted all four crystal structures as their first ranked choice, albeit at a considerable computational expense. The results reflect important improvements in modelling methods and suggest that, at least for the small and fairly rigid types of molecules included in this blind test, such calculations can be constructively applied to help understand crystallization and polymorphism of organic molecules.


Acta Crystallographica Section B-structural Science | 2011

Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test

David A. Bardwell; Claire S. Adjiman; Yelena A. Arnautova; E. V. Bartashevich; Stephan X. M. Boerrigter; Doris E. Braun; Aurora J. Cruz-Cabeza; Graeme M. Day; Raffaele Guido Della Valle; Gautam R. Desiraju; Bouke P. van Eijck; Julio C. Facelli; Marta B. Ferraro; Damián A. Grillo; Matthew Habgood; D.W.M. Hofmann; Fridolin Hofmann; K. V. Jovan Jose; Panagiotis G. Karamertzanis; Andrei V. Kazantsev; John Kendrick; Liudmila N. Kuleshova; Frank J. J. Leusen; Andrey V. Maleev; Alston J. Misquitta; Sharmarke Mohamed; R. J. Needs; Marcus A. Neumann; Denis Nikylov; Anita M. Orendt

The results of the fifth blind test of crystal structure prediction, which show important success with more challenging large and flexible molecules, are presented and discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Recent improvements in prediction of protein structure by global optimization of a potential energy function.

Jaroslaw Pillardy; Cezary Czaplewski; Adam Liwo; Jooyoung Lee; Daniel R. Ripoll; Rajmund Kaźmierkiewicz; Stanisław Ołdziej; William J. Wedemeyer; Kenneth D. Gibson; Yelena A. Arnautova; Jeffrey A. Saunders; Yuan-Jie Ye; Harold A. Scheraga

Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (Cα) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å Cα rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the Cα rmsds are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a Cα rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Quantum-mechanics-derived 13Cα chemical shift server (CheShift) for protein structure validation

Jorge A. Vila; Yelena A. Arnautova; Osvaldo A. Martin; Harold A. Scheraga

A server (CheShift) has been developed to predict 13Cα chemical shifts of protein structures. It is based on the generation of 696,916 conformations as a function of the φ, ψ, ω, χ1 and χ2 torsional angles for all 20 naturally occurring amino acids. Their 13Cα chemical shifts were computed at the DFT level of theory with a small basis set and extrapolated, with an empirically-determined linear regression formula, to reproduce the values obtained with a larger basis set. Analysis of the accuracy and sensitivity of the CheShift predictions, in terms of both the correlation coefficient R and the conformational-averaged rmsd between the observed and predicted 13Cα chemical shifts, was carried out for 3 sets of conformations: (i) 36 x-ray-derived protein structures solved at 2.3 Å or better resolution, for which sets of 13Cα chemical shifts were available; (ii) 15 pairs of x-ray and NMR-derived sets of protein conformations; and (iii) a set of decoys for 3 proteins showing an rmsd with respect to the x-ray structure from which they were derived of up to 3 Å. Comparative analysis carried out with 4 popular servers, namely SHIFTS, SHIFTX, SPARTA, and PROSHIFT, for these 3 sets of conformations demonstrated that CheShift is the most sensitive server with which to detect subtle differences between protein models and, hence, to validate protein structures determined by either x-ray or NMR methods, if the observed 13Cα chemical shifts are available. CheShift is available as a web server.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Assessing the fractions of tautomeric forms of the imidazole ring of histidine in proteins as a function of pH

Jorge A. Vila; Yelena A. Arnautova; Yury N. Vorobjev; Harold A. Scheraga

A method is proposed to determine the fraction of the tautomeric forms of the imidazole ring of histidine in proteins as a function of pH, provided that the observed and chemical shifts and the protein structure, or the fraction of H+ form, are known. This method is based on the use of quantum chemical methods to compute the 13C NMR shieldings of all the imidazole ring carbons (13Cγ, , and ) for each of the two tautomers, Nδ1-H and Nϵ2-H, and the protonated form, H+, of histidine. This methodology enabled us (i) to determine the fraction of all the tautomeric forms of histidine for eight proteins for which the and chemical shifts had been determined in solution in the pH range of 3.2 to 7.5 and (ii) to estimate the fraction of tautomeric forms of eight histidine-containing dipeptide crystals for which the chemical shifts had been determined by solid-state 13C NMR. Our results for proteins indicate that the protonated form is the most populated one, whereas the distribution of the tautomeric forms for the imidazole ring varies significantly among different histidines in the same protein, reflecting the importance of the environment of the histidines in determining the tautomeric forms. In addition, for ∼70% of the neutral histidine-containing dipeptides, the method leads to fairly good agreement between the calculated and the experimental tautomeric form. Coexistence of different tautomeric forms in the same crystal structure may explain the remaining 30% of disagreement.


Computer Physics Communications | 2000

Efficient parallel algorithms in global optimization of potential energy functions for peptides, proteins, and crystals

Jooyoung Lee; Jarosl̵aw Pillardy; Cezary Czaplewski; Yelena A. Arnautova; Daniel R. Ripoll; Adam Liwo; Kenneth D. Gibson; Ryszard J. Wawak; Harold A. Scheraga

Global optimization is playing an increasing role in physics, chemistry, and biophysical chemistry. One of the most important applications of global optimization is to find the global minima of the potential energy of molecules or molecular assemblies, such as crystals. The solution of this problem typically requires huge computational effort. Even the fastest processor available is not fast enough to carry out this kind of computation in real time for the problems of real interest, e.g., protein and crystal structure prediction. One way to circumvent this problem is to take advantage of massively parallel computing. In this paper, we provide several examples of parallel implementations of global optimization algorithms developed in our laboratory. All of these examples follow the master/worker approach. Most of the methods are parallelized on the algorithmic (coarse-grain) level and one example of fine-grain parallelism is given, in which the function evaluation itself is computationally expensive. All parallel algorithms were initially implemented on an IBM/SP2 (distributed-memory) machine. In all cases, however, message passing is handled through the standard Message Passing Interface (MPI); consequently the algorithms can also be implemented on any distributed- or shared-memory system that runs MPI. The efficiency of these implementations is discussed.


Proteins | 2011

Development of a new physics‐based internal coordinate mechanics force field and its application to protein loop modeling

Yelena A. Arnautova; Ruben Abagyan; Maxim Totrov

We report the development of internal coordinate mechanics force field (ICMFF), new force field parameterized using a combination of experimental data for crystals of small molecules and quantum mechanics calculations. The main features of ICMFF include: (a) parameterization for the dielectric constant relevant to the condensed state (ϵ = 2) instead of vacuum, (b) an improved description of hydrogen‐bond interactions using duplicate sets of van der Waals parameters for heavy atom‐hydrogen interactions, and (c) improved backbone covalent geometry and energetics achieved using novel backbone torsional potentials and inclusion of the bond angles at the Cα atoms into the internal variable set. The performance of ICMFF was evaluated through loop modeling simulations for 4–13 residue loops. ICMFF was combined with a solvent‐accessible surface area solvation model optimized using a large set of loop decoys. Conformational sampling was carried out using the biased probability Monte Carlo method. Average/median backbone root‐mean‐square deviations of the lowest energy conformations from the native structures were 0.25/0.21 Å for four residues loops, 0.84/0.46 Å for eight residue loops, and 1.16/0.73 Å for 12 residue loops. To our knowledge, these results are significantly better than or comparable with those reported to date for any loop modeling method that does not take crystal packing into account. Moreover, the accuracy of our method is on par with the best previously reported results obtained considering the crystal environment. We attribute this success to the high accuracy of the new ICM force field achieved by meticulous parameterization, to the optimized solvent model, and the efficiency of the search method. Proteins 2011.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Conformation-family Monte Carlo: A new method for crystal structure prediction

Jaroslaw Pillardy; Yelena A. Arnautova; Cezary Czaplewski; Kenneth D. Gibson; Harold A. Scheraga

A new global optimization method, Conformation-family Monte Carlo, has been developed recently for searching the conformational space of macromolecules. In the present paper, we adapted this method for prediction of crystal structures of organic molecules without assuming any symmetry constraints except the number of molecules in the unit cell. This method maintains a database of low energy structures that are clustered into families. The structures in this database are improved iteratively by a Metropolis-type Monte Carlo procedure together with energy minimization, in which the search is biased toward the regions of the lowest energy families. The Conformation-family Monte Carlo method is applied to a set of nine rigid and flexible organic molecules by using two popular force fields, AMBER and W99. The method performed well for the rigid molecules and reasonably well for the molecules with torsional degrees of freedom.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Use of 13Cα chemical shifts for accurate determination of β-sheet structures in solution

Jorge A. Vila; Yelena A. Arnautova; Harold A. Scheraga

A physics-based method, aimed at determining protein structures by using NOE-derived distance constraints together with observed and computed 13Cα chemical shifts, is applied to determine the structure of a 20-residue all-β peptide (BS2). The approach makes use of 13Cα chemical shifts, computed at the density functional level of theory, to derive backbone and side-chain torsional constraints for all of the amino acid residues, without making use of information about residue occupancy in any region of the Ramachandran map. In addition, the torsional constraints are derived dynamically—i.e., they are redefined at each step of the algorithm. It is shown that, starting from randomly generated conformations, the final protein models are more accurate than existing NMR-derived models of the peptide, in terms of the agreement between predicted and observed 13Cβ chemical shifts, and some stereochemical quality indicators. The accumulated evidence indicates that, for a highly flexible BS2 peptide in solution, it may not be possible to determine a single structure (or a small set of structures) that would satisfy all of the constraints exactly and simultaneously because the observed NOEs and 13Cα chemical shifts correspond to a dynamic ensemble of conformations. Analysis of the structural flexibility, carried out by molecular dynamics simulations in explicit water, revealed that the whole peptide can be characterized as having liquid-like behavior, according to the Lindemann criterion. In summary, a β-sheet structure of a highly flexible peptide in solution can be determined by a quantum-chemical-based procedure.


Proteins | 2009

Identifying native-like protein structures with scoring functions based on all-atom ECEPP force fields, implicit solvent models and structure relaxation

Yelena A. Arnautova; Yury N. Vorobjev; Jorge A. Vila; Harold A. Scheraga

Availability of energy functions which can discriminate native‐like from non‐native protein conformations is crucial for theoretical protein structure prediction and refinement of low‐resolution protein models. This article reports the results of benchmark tests for scoring functions based on two all‐atom ECEPP force fields, that is, ECEPP/3 and ECEPP05, and two implicit solvent models for a large set of protein decoys. The following three scoring functions are considered: (i) ECEPP05 plus a solvent‐accessible surface area model with the parameters optimized with a set of protein decoys (ECEPP05/SA); (ii) ECEPP/3 plus the solvent‐accessible surface area model of Ooi et al. (Proc Natl Acad Sci USA 1987;84:3086–3090) (ECEPP3/OONS); and (iii) ECEPP05 plus an implicit solvent model based on a solution of the Poisson equation with an optimized Fast Adaptive Multigrid Boundary Element (FAMBEpH) method (ECEPP05/FAMBEpH). Short Monte Carlo‐with‐Minimization (MCM) simulations, following local energy minimization, are used as a scoring method with ECEPP05/SA and ECEPP3/OONS potentials, whereas energy calculation is used with ECEPP05/FAMBEpH. The performance of each scoring function is evaluated by examining its ability to distinguish between native‐like and non‐native protein structures. The results of the tests show that the new ECEPP05/SA scoring function represents a significant improvement over the earlier ECEPP3/OONS version of the force field. Thus, it is able to rank native‐like structures with Cα root‐mean‐square‐deviations below 3.5 Å as lowest‐energy conformations for 76% and within the top 10 for 87% of the proteins tested, compared with 69 and 80%, respectively, for ECEPP3/OONS. The use of the FAMBEpH solvation model, which provides a more accurate description of the protein‐solvent interactions, improves the discriminative ability of the scoring function to 89%. All failed tests in which the native‐like structures cannot be discriminated as those with low energy, are due to omission of protein–protein interactions. The results of this study represent a benchmark in force‐field development, and may be useful for evaluation of the performance of different force fields. Proteins 2009.

Collaboration


Dive into the Yelena A. Arnautova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge A. Vila

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Liwo

University of Gdańsk

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jooyoung Lee

Korea Institute for Advanced Study

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge