Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yelena Parfyonova is active.

Publication


Featured researches published by Yelena Parfyonova.


PLOS ONE | 2011

Adipose-Derived Stem Cells Stimulate Regeneration of Peripheral Nerves: BDNF Secreted by These Cells Promotes Nerve Healing and Axon Growth De Novo

Tatiana Lopatina; Natalia O. Kalinina; Maxim N. Karagyaur; D. Stambolsky; K. A. Rubina; Alexander V. Revischin; G. V. Pavlova; Yelena Parfyonova; Tkachuk Va

Transplantation of adipose-derived mesenchymal stem cells (ASCs) induces tissue regeneration by accelerating the growth of blood vessels and nerve. However, mechanisms by which they accelerate the growth of nerve fibers are only partially understood. We used transplantation of ASCs with subcutaneous matrigel implants (well-known in vivo model of angiogenesis) and model of mice limb reinnervation to check the influence of ASC on nerve growth. Here we show that ASCs stimulate the regeneration of nerves in innervated mices limbs and induce axon growth in subcutaneous matrigel implants. To investigate the mechanism of this action we analyzed different properties of these cells and showed that they express numerous genes of neurotrophins and extracellular matrix proteins required for the nerve growth and myelination. Induction of neural differentiation of ASCs enhances production of brain-derived neurotrophic factor (BDNF) as well as ability of these cells to induce nerve fiber growth. BDNF neutralizing antibodies abrogated the stimulatory effects of ASCs on the growth of nerve sprouts. These data suggest that ASCs induce nerve repair and growth via BDNF production. This stimulatory effect can be further enhanced by culturing the cells in neural differentiation medium prior to transplantation.


Tissue Engineering Part A | 2009

Adipose Stromal Cells Stimulate Angiogenesis via Promoting Progenitor Cell Differentiation, Secretion of Angiogenic Factors, and Enhancing Vessel Maturation

K. A. Rubina; Natalia O. Kalinina; Anastasia Yu. Efimenko; Tatyana Lopatina; Varvara Melikhova; Zoya Tsokolaeva; Veronika Yu. Sysoeva; Tkachuk Va; Yelena Parfyonova

Adipose-derived stromal cells (ASCs) are suggested to be potent candidates for cell therapy of ischemic conditions due to their ability to stimulate blood vessel growth. ASCs produce many angiogenic and anti-apoptotic growth factors, and their secretion is significantly enhanced by hypoxia. Utilizing a Matrigel implant model, we showed that hypoxia-treated ASCs stimulated angiogenesis as well as maturation of the newly formed blood vessels in vivo. To elucidate mechanisms of ASC angiogenic action, we used a co-culture model of ASCs with cells isolated from early postnatal hearts (cardiomyocyte fraction, CMF). CMF contained mature cardiomyocytes, endothelial cells, and progenitor cells. On the second day of culture CMF cells formed spontaneously beating colonies with CD31+ capillary-like structures outgrowing from those cell aggregates. However, these vessel-like structures were not stable, and disassembled within next 5 days. Co-culturing of CMF with ASCs resulted in the formation of stable and branched CD31+ vessel-like structures. Using immunomagnetic depletion of CMF from vascular cells as well as incubation of CMF with mitomycin C-treated ASCs, we showed that in co-culture ASCs enhance blood vessel growth not only by production of paracrine-acting factors but also by promoting the endothelial differentiation of cardiac progenitor cells. All these mechanisms of actions could be beneficial for the stimulation of angiogenesis in ischemic tissues by ASCs administration.


Blood | 2008

Nuclear translocation of urokinase-type plasminogen activator.

Victoria Stepanova; Tatiana Lebedeva; Alice Kuo; Serge Yarovoi; Sergei Tkachuk; Sergei Zaitsev; Khalil Bdeir; Inna Dumler; Michael S. Marks; Yelena Parfyonova; Tkachuk Va; Abd Al-Roof Higazi; Douglas B. Cines

Urokinase-type plasminogen activator (uPA) participates in diverse (patho)physiological processes through intracellular signaling events that affect cell adhesion, migration, and proliferation, although the mechanisms by which these occur are only partially understood. Here we report that upon cell binding and internalization, single-chain uPA (scuPA) translocates to the nucleus within minutes. Nuclear translocation does not involve proteolytic activation or degradation of scuPA. Neither the urokinase receptor (uPAR) nor the low-density lipoprotein-related receptor (LRP) is required for nuclear targeting. Rather, translocation involves the binding of scuPA to the nucleocytoplasmic shuttle protein nucleolin through a region containing the kringle domain. RNA interference and mutational analysis demonstrate that nucleolin is required for the nuclear transport of scuPA. Furthermore, nucleolin is required for the induction smooth muscle alpha-actin (alpha-SMA) by scuPA. These data reveal a novel pathway by which uPA is rapidly translocated to the nucleus where it might participate in regulating gene expression.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Urokinase Plasminogen Activator Stimulates Vascular Smooth Muscle Cell Proliferation Via Redox-Dependent Pathways

Mikhail Yu. Menshikov; O. S. Plekhanova; Hua Cai; Karel Chalupsky; Yelena Parfyonova; Pavel Bashtrikov; Tkachuk Va; Bradford C. Berk

Objective—We showed previously that increased urokinase plasminogen activator (uPA) expression contributes to vascular smooth muscle cell (VSMC) proliferation and neointima formation after injury. Proliferation of cultured rat aortic VSMCs induced by uPA was inhibited by the antioxidant ebselen. Because increases in VSMC reactive oxygen species (ROS) contribute to VSMC proliferation, we hypothesized that uPA increases ROS generation by regulating expression or activity of cellular oxidases. Methods and Results—uPA stimulated ROS production to levels equivalent to angiotensin II as measured by electron spin resonance and fluorescent redox indicators (dichlorofluorescein diacetate, lucigenin, and hydroethidine). The increase in ROS was biphasic, with the first peak at 30 minutes and the second peak at 4 hours. uPA increased expression of the NAD(P)H oxidases Nox1 and Nox4 as measured by RT-PCR and Western blot analysis. Knockdown of Nox1 and Nox4 expression with small interfering RNA showed that both isoforms (Nox1>Nox4) contributed significantly to uPA-stimulated ROS production and VSMC proliferation. Transfection of VSMCs with uPA cDNA to increase endogenous uPA expression enhanced ROS production dramatically, suggesting that autocrine uPA production may be an important mechanism for uPA-mediated VSMC events. Conclusion—These data show that uPA is an autocrine VSMC growth factor that increases ROS generated by both Nox1 and Nox4 oxidases.


Stem Cells Translational Medicine | 2014

Adipose-Derived Mesenchymal Stromal Cells From Aged Patients With Coronary Artery Disease Keep Mesenchymal Stromal Cell Properties but Exhibit Characteristics of Aging and Have Impaired Angiogenic Potential

Anastasia Yu. Efimenko; Nina Dzhoyashvili; Natalia O. Kalinina; Tatiana Nikolaevna Kochegura; Renat S Akchurin; Tkachuk Va; Yelena Parfyonova

Tissue regeneration is impaired in aged individuals. Adipose‐derived mesenchymal stromal cells (ADSCs), a promising source for cell therapy, were shown to secrete various angiogenic factors and improve vascularization of ischemic tissues. We analyzed how patient age affected the angiogenic properties of ADSCs. ADSCs were isolated from subcutaneous fat tissue of patients with coronary artery disease (CAD; n = 64, 43–77 years old) and without CAD (n = 31, 2–82 years old). ADSC phenotype characterized by flow cytometry was CD90+/CD73+/CD105+/CD45−/CD31− for all samples, and these cells were capable of adipogenic and osteogenic differentiation. ADSCs from aged patients had shorter telomeres (quantitative reverse transcription polymerase chain reaction) and a tendency to attenuated telomerase activity. ADSC‐conditioned media (ADSC‐CM) stimulated capillary‐like tube formation by endothelial cells (EA.hy926), and this effect significantly decreased with the age of patients both with and without CAD. Angiogenic factors (vascular endothelial growth factor, placental growth factor, hepatocyte growth factor, angiopoetin‐1, and angiogenin) in ADSC‐CM measured by enzyme‐linked immunosorbent assay significantly decreased with patient age, whereas levels of antiangiogenic factors thrombospondin‐1 and endostatin did not. Expression of angiogenic factors in ADSCs did not change with patient age (real‐time polymerase chain reaction); however, gene expression of factors related to extracellular proteolysis (urokinase and its receptor, plasminogen activator inhibitor‐1) and urokinase‐type plasminogen activator receptor surface expression increased in ADSCs from aged patients with CAD. ADSCs from aged patients both with and without CAD acquire aging characteristics, and their angiogenic potential declines because of decreasing proangiogenic factor secretion. This could restrict the effectiveness of autologous cell therapy with ADSCs in aged patients.


Canadian Journal of Physiology and Pharmacology | 2009

Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator.

Tkachuk Va; O. S. Plekhanova; Yelena Parfyonova

A wide variety of disorders are associated with an imbalance in the plasminogen activator system, including inflammatory diseases, atherosclerosis, intimal hyperplasia, the response mechanism to vascular injury, and restenosis. Urokinase-type plasminogen activator (uPA) is a multifunctional protein that in addition to its fibrinolytic and matrix degradation capabilities also affects growth factor bioavailability, cytokine modulation, receptor shedding, cell migration and proliferation, phenotypic modulation, protein expression, and cascade activation of proteases, inhibitors, receptors, and modulators. uPA is the crucial protein for neointimal growth and vascular remodeling. Moreover, it was recently shown to be implicated in the stimulation of angiogenesis, which makes it a promising multipurpose therapeutic target. This review is focused on the mechanisms by which uPA can regulate arterial remodeling, angiogenesis, and cell migration and proliferation after arterial injury and the means by which it modulates gene expression in vascular cells. The role of domain specificity of urokinase in these processes is also discussed.


Biomaterials | 2014

Baculovirus-transduced, VEGF-expressing adipose-derived stem cell sheet for the treatment of myocardium infarction.

Tsung Szu Yeh; Yu Hua Dean Fang; Chia Hsin Lu; Shao Chieh Chiu; Chia Lin Yeh; Tzu Chen Yen; Yelena Parfyonova; Yu-Chen Hu

Cell sheet technology has been widely employed for the treatment of myocardial infarction (MI), but cell sheet fabrication generally requires the use of thermo-responsive dishes. Here we developed a method for the preparation of adipose-derived stem cell (ASC) sheet that obviated the need of thermo-responsive dishes. This method only required the seeding of rabbit ASC onto 6-well plates at an appropriate cell density and culture in appropriate medium, and the cells were able to develop into ASC sheet in 2 days. The ASC sheet allowed for transduction with the hybrid baculovirus at efficiencies >97%, conferring robust and prolonged (>35 days) overexpression of vascular endothelial growth factor (VEGF). The ASC sheet was easily detached by brief (10 s) trypsinization and saline wash, while retaining the extracellular matrix and desired physical properties. The ASC sheet formation and VEGF expression promoted cell survival under hypoxia in vitro. Epicardial implantation of the VEGF-expressing ASC sheet to rabbit MI models reduced the infarct size and improved cardiac functions to non-diseased levels, as judged from the left ventrical ejection fraction/myocardial perfusion. The VEGF-expressing ASC sheet also effectively prevented myocardial wall thinning, suppressed myocardium fibrosis and enhanced blood vessel formation. These data implicated the potential of this method for the preparation of genetically engineered ASC sheet and future MI treatment.


Atherosclerosis | 2001

Urokinase plasminogen activator augments cell proliferation and neointima formation in injured arteries via proteolytic mechanisms

O. S. Plekhanova; Yelena Parfyonova; Robert Bibilashvily; Sergei Domogatskii; Victoria Stepanova; Dietrich Gulba; Alex Agrotis; Alex Bobik; Tkachuk Va

Urokinase plasminogen activator (uPA) has been implicated in the healing responses of injured arteries, but the importance of its various properties that influence smooth muscle cell (SMC) proliferation and migration in vivo is unclear. We used three recombinant (r-) forms of uPA, which differ markedly in their proteolytic activities and abilities to bind to the uPA receptor (uPAR), to determine, which property most influences the healing responses of balloon catheter injured rat carotid arteries. After injury, uPA and uPAR expression increased markedly throughout the period when medial SMCs were rapidly proliferating and migrating to form the neointima. Perivascular application of uPA neutralizing antibodies immediately after injury attenuated the healing response, significantly reducing neointima size and neointimal SMC numbers. Perivascular application of r-uPAwt (wild type uPA) or r-uPA/GDF (r-uPA with multiple mutations in its growth factor-like domain) doubled the size of the neointima. Four days after injury these two uPAs nearly doubled neointimal and medial SMC numbers in the vessels, and induced greater reductions in lumen size than injury alone. Proteolytically inactive r-uPA/H/Q (containing glutamine rather than histidine-204 in its catalytic site) did not affect neointima or lumen size. Also, in contrast to the actions of proteolytically active uPAs, tissue plasminogen activator (tPA) did not affect the rate of neointima development. We conclude that uPA is an important factor regulating the healing responses of balloon catheter injured arteries, and its proteolytic property, which cannot be mimicked by tPA, greatly influences SMC proliferation and early neointima formation.


Journal of Translational Medicine | 2013

Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle.

Evgeny Shevchenko; Pavel I. Makarevich; Zoya Tsokolaeva; Maria A. Boldyreva; Veronika Yu. Sysoeva; Tkachuk Va; Yelena Parfyonova

BackgroundModified cell-based angiogenic therapy has become a promising novel strategy for ischemic heart and limb diseases. Most studies focused on myoblast, endothelial cell progenitors or bone marrow mesenchymal stromal cells transplantation. Yet adipose-derived stromal cells (in contrast to bone marrow) are abundantly available and can be easily harvested during surgery or liposuction. Due to high paracrine activity and availability ADSCs appear to be a preferable cell type for cardiovascular therapy. Still neither genetic modification of human ADSC nor in vivo therapeutic potential of modified ADSC have been thoroughly studied. Presented work is sought to evaluate angiogenic efficacy of modified ADSCs transplantation to ischemic tissue.Materials and methodsHuman ADSCs were transduced using recombinant adeno-associated virus (rAAV) serotype 2 encoding human VEGF165. The influence of genetic modification on functional properties of ADSCs and their angiogenic potential in animal models were studied.ResultsWe obtained AAV-modified ADSC with substantially increased secretion of VEGF (VEGF-ADSCs). Transduced ADSCs retained their adipogenic and osteogenic differentiation capacities and adhesion properties. The level of angiopoetin-1 mRNA was significantly increased in VEGF-ADSC compared to unmodified cells yet expression of FGF-2, HGF and urokinase did not change. Using matrigel implant model in mice it was shown that VEGF-ADSC substantially stimulated implant vascularization with paralleling increase of capillaries and arterioles. In murine hind limb ischemia test we found significant reperfusion and revascularization after intramuscular transplantation of VEGF-ADSC compared to controls with no evidence of angioma formation.ConclusionsTransplantation of AAV-VEGF- gene modified hADSC resulted in stronger therapeutic effects in the ischemic skeletal muscle and may be a promising clinical treatment for therapeutic angiogenesis.


Journal of Vascular Research | 2004

Contrasting Effects of Urokinase and Tissue-Type Plasminogen Activators on Neointima Formation and Vessel Remodelling after Arterial Injury

Yelena Parfyonova; O. S. Plekhanova; Marina A. Solomatina; Vladimir Naumov; Alex Bobik; Bradford C. Berk; Tkachuk Va

Urokinase-type plasminogen activator (uPA) has been implicated in neointima formation and arterial lumen narrowing after angioplasty. To determine the specificity of the action of uPA on vessel remodelling after arterial injury we compared the effects of the recombinant urokinase- and tissue-type plasminogen activators on vessel morphology, cell migration and proliferation. We used a standard model of the balloon catheter injury of the rat carotid artery followed by the periadventitial application to the injured vessel of the one of the recombinant PAs or recombinant α2-antiplasmin (α-AP) in pluronic gel with further immunohistochemistry and morphometry. The perivascular application of α-AP immediately after injury attenuated the healing response, significantly reducing neointima size and neointimal SMC numbers. The periadventitial application to the injured artery of recombinant uPA stimulated neointima formation as well as cell proliferation and migration in vivo and induced greater reductions in lumen size than injury alone. In contrast, recombinant tissue-type plasminogen activator reduced the number of neointimal smooth muscle cells and the neointimal area and increased both the lumen area and the area encompassed by the external elastic laminae after balloon catheter injury of the rat carotid artery. In the meantime both PAs nearly doubled medial and adventitial SMC numbers in the vessels. We conclude that the ability to stimulate neointima formation and inward arterial remodelling is a specific property for urokinase plasminogen activator that could not be mimicked by tissue-type plasminogen activator.

Collaboration


Dive into the Yelena Parfyonova's collaboration.

Top Co-Authors

Avatar

Tkachuk Va

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. A. Rubina

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge