Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yellela S.R. Krishnaiah is active.

Publication


Featured researches published by Yellela S.R. Krishnaiah.


Aaps Pharmscitech | 2005

In vitro and in vivo evaluation of guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride

Saleh M. Al-Saidan; Yellela S.R. Krishnaiah; Srinivas S. Patro; Vemulapalli Satyanaryana

The objective of the study was to develop guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. Matrix tablets of diltiazem hydrochloride, using various viscosity grades of guar gum in 2 proportions, were prepared by wet granulation method and subjected to in vitro drug release studies. Diltiazem hydrochloride matrix tablets containing either 30% wt/wt lowviscosity (LM1), 40% wt/wt medium-viscosity (MM2), or 50% wt/wt high-viscosity (HM2) guar gum showed controlled release. The drug release from all guar gum matrix tablets followed first-order kinetics via Fickian-diffusion. Further, the results of in vitro drug release studies in simulated gastrointestinal and colonic fluids showed that HM2 tablets provided controlled release comparable with marketed sustained release diltiazem hydrochloride tablets (D-SR tablets). Guar gum matrix tablets HM2 showed no change in physical appearance, drug content, or in dissolution pattern after storage at 40°C/relative humidity 75% for 6 months. When subjectd to in vivo pharmacokinetic evaluation in healthy volunteers, the HM2 tablets provided a slow and prolonged drug release when compared with D-SR tablets. Based on the results of in vitro and in vivo studies it was concluded that that guar gum matrix tablets provided oral controlled release of water-soluble diltiazem hydrochloride.


Current Drug Delivery | 2005

In Vitro and In Vivo Evaluation of Guar Gum-Based Matrix Tablets of Rofecoxib for Colonic Drug Delivery

Saleh M. Al-Saidan; Yellela S.R. Krishnaiah; V. Satyanarayana; G. S. Rao

The present study was carried out to develop and evaluate guar gum-based matrix tablets of rofecoxib for their intended use in the chemoprevention of colorectal cancer. Matrix tablets containing 40% (RXL-40), 50% (RXL-50), 60% (RXL-60) or 70% (RXL-70) of guar gum were prepared by wet granulation technique, and were subjected to in vitro drug release studies. Guar gum matrix tablets released only 5 to 12% of rofecoxib in the physiological environment of stomach and small intestine. The matrix tablets RXL-40 disintegrated completely within 10 h in a dissolution medium without rat caecal contents (control study), and hence not studied further. When the dissolution study was continued in simulated colonic fluids (rat caecal content medium), the matrix tablets RXL-50 were acted upon by colonic bacterial enzymes releasing the entire quantity of drug wherein there was no appreciable difference when compared to that released in control study. The matrix tablets RXL-60 released another 88% of rofecoxib whereas matrix tablets RXL-70 released only 57% of rofecoxib in simulated colonic fluids indicating the susceptibility of the guar gum formulations to the rat caecal contents. The guar gum matrix tablets RXL-70 were subjected to in vivo evaluation in human volunteers to find their ability of targeting rofecoxib to colon. The delayed Tmax, prolonged absorption time (ta), decreased Cmax and decreased ka indicated that rofecoxib was not released significantly in stomach and small intestine, but was delivered to colon resulting in a slow absorption of the drug and making it available for local action in human colon.


Drug Delivery | 2008

Penetration-Enhancing Effect of Ethanolic Solution of Menthol on Transdermal Permeation of Ondansetron Hydrochloride Across Rat Epidermis

Yellela S.R. Krishnaiah; M. Shiva Kumar; Vengaladasu Raju; M. Lakshmi; B. Rama

The aim of this investigation was to study the effect of an ethanol-water solvent system and ehtanolic solution of menthol on the permeation of ondansetron hydrochloride across the rat epidermis in order to select a suitable ethanol-water vehicle and optimal concentration of menthol for the development of a transdermal therapeutic system. The solubility of ondansetron hydrochloride in ethanol, water and selected concenetrtaion of ethanol-water vehicles (20:80 v/v, 40:60 v/v and 60:40 v/v) was determined. The effect of these solvent vehicles, containing 1.5% w/v of ondansetron hydrochloride, on the in vitro permeation of the drug was studied across the rat epidermis. The highest permeation was observed from 60% v/v of ethanol-water vehicle that showed highest solubilty. Hence, the hydroxypropyl cellulose (HPC) (2% w/w) gel formulations containing 1.5% w/w of ondansetron hydrochloride and selected concentrations of menthol (0, 2, 4, 8 and 10% w/w) were prepared using 60% v/v of ethanol-water vehicle, and subjected to in vitro permeation of the drug across rat epidermis. The transdermal permeation of ondansetron hydrochloride was enhanced markedly by the addition of menthol to HPC gel drug reservoir formulations. A maximum flux of ondansetron hydrochloride (77.85 ± 2.85 μ g/cm2.h) was observed with a mean enhancement ratio of 13.06 when menthol was incorporated at a concentration of 8% w/w in HPC gels. However, there was no significant increase in the drug flux with 10% w/w menthol when compared to that obtained with 8% w/w of menthol in HPC gel formulations. The results suggest that 2% w/w HPC gel drug reservoir formulation, prepared with 60% v/v ethanol-water, containing 8% w/w of menthol provides an optimal transdermal permeation of ondansetron hydrochloride.


Drug Development and Industrial Pharmacy | 2006

Effect of Nerodilol and Carvone on in vitro Permeation of Nicorandil Across Rat Epidermal Membrane

Yellela S.R. Krishnaiah; Saleh M. Al-Saidan; Dantam V. Chandrasekhar; Bukka Rama

ABSTRACT The objective of the study was to investigate the effect of nerodilol and carvone on the in vitro transdermal delivery of nicorandil so as to fabricate a membrane-moderated transdermal therapeutic system. The in vitro permeation studies were carried across the rat epidermal membrane from the hydroxypropyl methylcellulose (HPMC) gels (prepared with 70:30 v/v ethanol–water) containing selected concentrations of a terpene such as nerodilol (0% w/w, 4% w/w, 8% w/w, 10% w/w, or 12% w/w) or carvone (0% w/w, 4% w/w, 8% w/w, 12% w/w, or 16% w/w). The amount of nicorandil permeated (Q24) from HPMC gel drug reservoir without a terpene was 3424.6 ± 51.4 μg/cm2, and the corresponding flux of the drug was 145.5 ± 2.2 μg/cm2· h. The flux of nicorandil increased with an increase in terpene concentration in HPMC gel. It was increased ranging from 254.9 ± 3.1 to 375.7 ± 3.2 μg/cm2·h or 207.6 ± 4.7 to 356.7 ± 15.3 μg/cm2· h from HPMC gels containing nerodilol (4% w/w to 12% w/w) or carvone (4% w/w to 16% w/w), respectively. Nerodilol increased the flux of nicorandil by about 2.62-folds whereas carvone increased the flux of the drug by about 2.49-folds across the rat epidermal membrane. The results of the Fourier Transform Infrared (FT-IR) study indicated that the enhanced in vitro transdermal delivery of nicorandil might be due to the partial extraction of stratum corneum lipids by nerodilol or carvone. It was concluded that the terpenes, nerodilol and carvone, produced a marked penetration enhancing effect on the transdermal delivery of nicorandil that could be used in the fabrication of membrane-moderated transdermal therapeutic systems.


Pharmaceutical Development and Technology | 2009

Effect of PEG6000 on the In Vitro and In Vivo Transdermal Permeation of Ondansetron Hydrochloride from EVA1802 Membranes

Yellela S.R. Krishnaiah; Bukka Rama; Vanambattina Raghumurthy; Kolapalli Venkata Ramanamurthy; Vemulapalli Satyanarayana

The objective was to evaluate ethylene vinyl acetate (EVA) copolymer membranes with vinyl acetate content of 18% w/w (EVA1802) for transdermal delivery of ondansetron hydrochloride. The EVA1802 membranes containing selected concentrations (0, 5, 10 and 15% w/w) of PEG6000 were prepared, and subjected to in vitro permeation studies from a nerodilol-based drug reservoir. Flux of ondansetron from EVA1802 membranes without PEG6000 was 64.1 ± 0.6 μg/cm2·h, and with 10%w/w of PEG6000 (EVA1802-PEG6000-10) it increased to 194.9 ± 4.6 μg/cm2·h. However, with 15%w/w of PEG6000, EVA1802 membranes produced a burst release of drug which in turn decreased drug flux. The EVA1802-PEG6000-10 membrane was coated with an adhesive emulsion, applied to rat epidermis and subjected to in vitro permeation studies against controls. Flux of ondansetron from transdermal patch across rat epidermis was 111.7 ± 1.3 μg/cm2·h, which is about 1.3 times the required flux. A TTS was fabricated using adhesive-coated EVA1802-PEG6000-10 membrane and other TTS components, and subjected to in vivo delivery in human volunteers against a control. It was concluded from the comparative pharmacokinetic study that TTS of ondansetron, prepared with EVA1802-PEG6000-10 membrane, provided average steady-state plasma concentration on par with multiple-dosed oral tablets, but with a low percent of peak-to-trough fluctuation.


Pharmaceutical Development and Technology | 2008

Studies on Optimizing In Vitro Transdermal Permeation of Ondansetron Hydrochloride Using Nerodilol, Carvone, and Limonene as Penetration Enhancers

Yellela S.R. Krishnaiah; Vengaladasu Raju; Mantri Shiva Kumar; Bukka Rama; Vanambattina Raghumurthy; Kolapalli Venkata Ramana Murthy

The present investigation was carried out to formulate a terpene-based hydroxypropyl cellulose (HPC) gel drug reservoir system for its optimal transdermal permeation of ondansetron hydrochloride. The HPC gel formulations containing ondansetron hydrochloride (3% w/w) and selected concentrations of either nerodilol (0% w/w, 1% w/w, 2% w/w, 3% w/w, and 4% w/w), carvone (0% w/w, 2% w/w, 4% w/w, 8% w/w, and 10% w/w), or limonene (0% w/w, 2% w/w, 3% w/w, and 4% w/w) were prepared and subjected to in vitro permeation of the drug across rat epidermis. All the 3 terpene enhancers increased the transdermal permeation of ondansetron hydrochloride. The optimal transdermal permeation was observed with 3% w/w of nerodilol (175.3 ± 3.1 μg/cm2.h), 8% w/w of carvone (87.4 ± 1.6 μg/cm2.h), or 3% w/w of limonene (181.9 ± 0.9 μg/cm2.h). The enhancement ratio (ER) in drug permeability with 3% w/w nerodilol, 8% w/w carvone, and 3% w/w limonene were 21.6, 10.8, and 22.5, respectively, when compared with that obtained without a terpene enhancer (control). However, there was 1.04-, 2.09-, and 2.17-fold increase in the optimal drug flux obtained with carvone, nerodilol, and limonene, respectively, when compared with the desired drug flux (84 μg/cm2.h). It was concluded that the HPC gel drug reservoir systems containing either 3% w/w nerodilol or 3% w/w limonene act as optimal formulations for use in the design of membrane-controlled transdermal therapeutic system (TTS) of ondansetron hydrochloride.


Drug Delivery | 2006

Controlled in vivo release of nicorandil from a carvone-based transdermal therapeutic system in human volunteers.

Yellela S.R. Krishnaiah; Saleh M. Al-Saidan; D.V. Chandrasekhar; V. Satyanarayana

The aim of our present study was to prepare and evaluate a carvone-based transdermal therapeutic system (TTS) of nicorandil to find its ability in providing the desired in vivo controlled release profile on dermal application to human volunteers. The effect of EVA 2825, and adhesive-coated EVA 2825, and adhesive-coated EVA 2825-rat skin composite on the in vitro permeation of nicorandil from a carvone-based HPMC gel drug reservoir was studied against a control (rat abdominal skin alone). The carvone-based drug reservoir system was sandwiched between adhesive-coated EVA 2825-release liner composite and a backing membrane. The resultant drug reservoir sandwich was heat-sealed to produce a circle-shaped TTS (20 cm2) that was subjected to in vivo evaluation on dermal application to human volunteers against oral administration of immediate-release tablets of nicorandil. The carvone-based TTS provided a steady-state plasma concentration of 20.5 ng/ml for ∼24 hr in human volunteers. We concluded that the carvone-based TTS of nicorandil provided the desired in vivo controlled-release profile of the drug for the predetermined period of time.


Current Drug Delivery | 2008

Limonene enhances the in vitro and in vivo permeation of trimetazidine across a membrane-controlled transdermal therapeutic system.

Yellela S.R. Krishnaiah; Saleh M. Al-Saidan

The objective of the study was to design membrane-controlled transdermal therapeutic system (TTS) for trimetazidine. The optimization of (i) concentration of ethanol-water solvent system, (ii) HPMC concentration of drug reservoir and (iii) limonene concentration in 2% w/v HPMC gel was done based on the in vitro permeation of trimetazidine across excised rat epidermis. A limonene-based membrane-controlled TTS of trimetazidine was fabricated and evaluated for its in vivo drug release in rabbit model. The in vitro permeation of trimetazidine from water, ethanol and selected concentrations (25, 50 and 75% v/v) of ethanol-water co-solvent systems showed that 50% v/v of ethanol-water solvent system provided an optimal transdermal flux of 233.1+/-3.8 microg/cm(2.)h. The flux of the drug decreased to 194.1+/-7.4 microg/cm(2.)h on adding 2% w/v of HPMC to ethanolic (50% v/v ethanol-water) solution of trimetazidine. However, on adding selected concentrations of limonene (0, 2, 4, 6 and 8% w/v) to 2% w/v HPMC gel drug reservoir, the flux of the drug increased to 365.5+/-7.1 microg/cm(2.)h. Based on these results, 2% w/v HPMC gel drug reservoir containing 6% w/v of limonene was chosen as an optimal formulation for studying the influence of rate-controlling EVA2825 membrane and adhesive-coated EVA2825 membrane. The flux of the drug across EVA2825 membrane (mean thickness 31.2 microm) decreased to 285.8+/-2.2 microg/cm(2.)h indicating that the chosen membrane was effective as rate-controlling membrane. On applying an adhesive coat (mean thickness 10.2 microm) to EVA2825 membrane, the drug flux further decreased to 212.4+/-2.6 microg/cm(2.)h. However, the flux of the drug across adhesive-coated EVA2825 membrane-rat epidermis composite was 185.9+/-2.9 microg/cm(2.)h, which is about 2-times higher than the desired flux. The fabricated limonene-based TTS patch of trimetazidine showed a mean steady state plasma concentration of 71.5 ng/mL for about 14 h with minimal fluctuation when tested in rabbits. It was concluded from the investigation that the limonene-based TTS patch of trimetazidine provided constant drug delivery across the skin in rabbit model.


Medical Principles and Practice | 2008

Transdermal Permeation of Trimetazidine from Nerodilol-Based HPMC Gel Drug Reservoir System across Rat Epidermis

Yellela S.R. Krishnaiah; Saleh M. Al-Saidan

Objective: To study the in vitro transdermal permeation of trimetazidine from hydroxypropylmethyl cellulose (HPMC) gel drug reservoir system using nerodilol as a penetration enhancer. Materials and Methods: An HPMC gel containing selected concentrations of nerodilol (0, 2, 4 or 5% w/v) and 2.5% w/v of trimetazidine was prepared, and subjected to in vitro permeation studies across rat epidermis. The amount of trimetazidine permeated at different time intervals (1, 2, 4, 8, 12, 18 and 24 h) was estimated, and the data were analyzed to calculate various permeation parameters. Results: There was an increase in the amount of trimetazidine (8,719.7 ± 153.3 µg/cm2)permeated across the rat epidermis up to 24 h (Q24) with an increase in nerodilol concentration (5% w/v) in HPMC gel drug reservoir. However, no significant difference (p > 0.05) was observed in the amount of drug permeated (Q24) with 5% w/v of nerodilol when compared to that obtained with 4% w/v of nerodilol (8,484.5 ± 165.8 µg/cm2). Nerodilol, at a concentration of 4% w/v enhanced the flux of trimetazidine across rat epidermis by about 1.96 times when compared to control. Conclusion: The HPMC gel drug reservoir containing 4% w/v of nerodilol showed optimal transdermal permeation of trimetazidine.


Pharmaceutical Development and Technology | 2012

Enantioselective penetration enhancing effect of carvone on the in vitro transdermal permeation of nicorandil.

Yellela S.R. Krishnaiah; Aly Nada

The objective was to investigate the difference in penetration enhancing effect of R-carvone, S-carvone and RS-carvone on the in vitro transdermal drug permeation. In vitro permeation studies were carried out across neonatal rat epidermis from 2%w/v HPMC (hydroxypropyl methylcellulose) gel containing 4%w/v of nicorandil (a model drug) and a selected concentration (12%w/v) of either R-carvone, S-carvone or RS-carvone against a control. The stratum corneum (SC) of rats was treated with vehicle (70%v/v ethanol-water) or ethanolic solutions of 12%w/v R-carvone, S-carvone or RS-carvone. The enhancement ratio (ER) of R-carvone, S-carvone and RS-carvone when compared to control was about 37.1, 31.2 and 29.9, respectively indicating enantioselective penetration enhancing effect of carvone enantiomers. Furthermore, there was a significant decrease in the lag time required to produce a steady-state flux of nicorandil with S-carvone when compared to R-carvone and RS-carvone. DSC and FT-IR studies indicate that the investigated enantiomers of carvone exhibit a difference in their ability to affect the cellular organization of SC lipids and proteins thereby showing enantioselective transdermal drug permeation. It was concluded that R-carvone exhibited a higher penetration enhancing activity on transdermal permeation of nicorandil when compared to its S-isomer or racemic mixture.

Collaboration


Dive into the Yellela S.R. Krishnaiah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge