Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yen-Chuan Ou is active.

Publication


Featured researches published by Yen-Chuan Ou.


Experimental Neurology | 2007

Transplantation of bone marrow stromal cells for peripheral nerve repair

Chun-Jung Chen; Yen-Chuan Ou; Su-Lan Liao; Wen-Ying Chen; Shih-Yun Chen; Ching-Wen Wu; Chun-Chiang Wang; Wen-Yi Wang; Yong-San Huang; Shan-hui Hsu

Cell transplantation using bone marrow stromal cells (BMSCs) to alleviate neurological deficits has recently become the focus of research in regenerative medicine. Evidence suggests that secretion of various growth-promoting substances likely plays an important role in functional recovery against neurological diseases. In an attempt to identify a possible mechanism underlying the regenerative potential of BMSCs, this study investigated the production and possible contribution of neurotrophic factors by transected sciatic nerve defect in a rat model with a 15 mm gap. Cultured BMSCs became morphologically homogeneous with fibroblast-like shape after ex vivo expansion. We provided several pieces of evidence for the beneficial effects of implanted fibroblast-like BMSCs on sciatic nerve regeneration. When compared to silicone tube control animals, this treatment led to (i) improved walking behavior as measured by footprint analysis, (ii) reduced loss of gastrocnemius muscle weight and EMG magnitude, and (iii) greater number of regenerating axons within the tube. Cultured fibroblast-like BMSCs constitutively expressed trophic factors and supporting substances, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF), collagen, fibronectin, and laminin. The progression of the regenerative process after BMSC implantation was accompanied by elevated expression of neurotrophic factors at both early and later phases. These results taken together, in addition to documented Schwann cell-like differentiation, provide evidence indicating the strong association of neurotrophic factor production and the regenerative potential of implanted BMSCs.


Neurochemistry International | 2006

Neuroprotection by tetramethylpyrazine against ischemic brain injury in rats

Tsung-Kuei Kao; Yen-Chuan Ou; Jong-Song Kuo; Wen-Yin Chen; Su-Lan Liao; Ching-Wen Wu; Chun-Jung Chen; Nai-Nu Ling; Yong-Hong Zhang; Wen-Huang Peng

In traditional Chinese medicine, Ligusticum wallichii Franchat (Chuan Xiong) and its active ingredient tetramethylpyrazine (TMP) have been used to treat cardiovascular diseases and to relieve various neurological symptoms such as ischemic deficits. However, scientific evidence related to their effectiveness or precise modes of neuroprotective action is largely unclear. In the current study, we elicited the neuroprotective mechanisms of TMP after focal cerebral ischemic/reperfusion (I/R) by common carotid arteries and middle cerebral artery occlusion model in rats. TMP was administrated 60 min before occlusion via intraperitoneal injection. TMP concentration-dependently exhibited significant neuroprotective effect against ischemic deficits by reduction of behavioral disturbance. Neuronal loss and brain infarction in the ischemic side of rats were markedly lowered by treatment with TMP. Cerebral I/R-induced internucleosomal DNA fragmentation, caspase-8, caspase-9, and caspase-3 activation, and cytochrome c release were reduced by TMP treatment. Western blot analysis revealed the down-regulation of Bcl-2 and Bcl-xL and the up-regulation of Bax and Bad by cerebral I/R insult. Among them, only the alteration in Bcl-xL expression was reversed by TMP treatment. Moreover, the activation of microglia and/or recruitment of inflammatory cells within the ischemic side and the consequent production of monocyte chemoattractant protein 1 (MCP-1) were suppressed by TMP pre-treatment. Our findings suggest that TMP might provide neuroprotection against ischemic brain injury, in part, through suppression of inflammatory reaction, reduction of neuronal apoptosis, and prevention of neuronal loss.


Neurochemistry International | 2006

Manganese modulates pro-inflammatory gene expression in activated glia.

Chun-Jung Chen; Yen-Chuan Ou; Shih-Yi Lin; Su-Lan Liao; Shih-Yun Chen; Jian-Hong Chen

Redox-active metals are of paramount importance for biological functions. Their impact and cellular activities participate in the physiological and pathophysiological processes of the central nervous system (CNS), including inflammatory responses. Manganese is an essential trace element and it is required for normal biological activities and ubiquitous enzymatic reactions. However, excessive chronic exposure to manganese results in neurobehavioral deficits. Recent evidence suggests that manganese neurotoxicity involves activation of microglia or astrocytes, representative CNS immune cells. In this study, we assessed the molecular basis of the effects of manganese on the modulation of pro-inflammatory cytokines and nitric oxide (NO) production in primary rat cortical glial cells. Cultured glial cells consisted of 85% of astrocytes and 15% of microglia. Within the assayed concentrations, manganese was unable to induce tumor necrosis factor alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS) expression, whereas it potentiated iNOS and TNF-alpha gene expression by lipopolysaccharide/interferon-gamma-activated glial cells. The enhancement was accompanied by elevation of free manganese, generation of oxidative stress, activation of mitogen-activated protein kinases, and increased NF-kappaB and AP-1 binding activities. The potentiated degradation of inhibitory molecule IkappaB-alpha was one of underlying mechanisms for the increased activation of NF-kappaB by manganese. However, manganese decreased iNOS enzymatic activity possibly through the depletion of cofactor since exogenous tetrahydrobiopterin reversed manganeses action. These data indicate that manganese could modulate glial inflammation through variable strategies.


Experimental Neurology | 2013

Tetramethylpyrazine reduces cellular inflammatory response following permanent focal cerebral ischemia in rats.

Tsung-Kuei Kao; Cheng-Yi Chang; Yen-Chuan Ou; Wen-Ying Chen; Yu-Hsiang Kuan; Hung-Chuan Pan; Su-Lan Liao; Guo-Zhang Li; Chun-Jung Chen

Tetramethylpyrazine (TMP) has been used to treat ischemic stroke. However, scientific evidence related to its effectiveness or precise modes of neuroprotective action is largely unclear. This study provides evidence of an alternative target for TMP and sheds light on the mechanism of its physiological benefits. We report a global inhibitory effect of TMP on intracerebral cellular inflammatory response in a rat model of permanent cerebral ischemia. TMP exhibited a neuroprotective effect against ischemic deficits by reduction of behavioral disturbance, brain infarction, and edema. The results of immunohistochemistry, enzymatic assay, Western blot, real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and flow cytometric analysis revealed that TMP reduced the percentages of activated macrophages/microglia and infiltrative lymphocytes, neutrophils, and macrophages and pro-inflammatory cytokine expression after cerebral ischemia. In parallel with these immunosuppressive phenomena, TMP also attenuated the activities of ischemia-induced inflammation-associated signaling molecules and transcription factors. Another finding in this study was that the anti-inflammatory and neuroprotective effects of TMP were accompanied by a further elevated expression of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in ipsilateral neurons and macrophages/microglia after cerebral ischemia. Taken together, our results suggest that both the promotion of endogenous defense capacity and the attenuation of the extent and composition percentage of the major cellular inflammatory responses via targeting of macrophages/microglia by elevating Nrf2/HO-1 expression might actively contribute to TMP-mediated neuroprotection against cerebral ischemia.


Journal of Nutritional Biochemistry | 2011

Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia

Tsung-Kuei Kao; Yen-Chuan Ou; Shih-Yi Lin; Hung-Chuan Pan; Pei-Jyuan Song; Shue-Ling Raung; Ching-Yi Lai; Su-Lan Liao; Hsi-Chi Lu; Chun-Jung Chen

Microglial activation plays a pivotal role in the pathogenesis of neurodegenerative disease by producing excessive proinflammatory cytokines and nitric oxide (NO). Luteolin, a naturally occurring polyphenolic flavonoid antioxidant, has potent anti-inflammatory and neuroprotective properties both in vitro and in vivo. However, the molecular mechanism of luteolin-mediated immune modulation in microglia is not fully understood. In the present study, we report the inhibitory effect of luteolin on lipopolysaccharide (LPS)/interferon γ (IFN-γ)-induced NO and proinflammatory cytokine production in rat primary microglia and BV-2 microglial cells. Luteolin concentration-dependently abolished LPS/IFN-γ-induced NO, tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) production as well as inducible nitric oxide synthase (iNOS) protein and mRNA expression. Luteolin exerted an inhibitory effect on transcription factor activity including nuclear factor κB (NF-κB), signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF-1) in LPS/IFN-γ-activated BV-2 microglial cells. Biochemical and pharmacological studies revealed that the anti-inflammatory effect of luteolin was accompanied by down-regulation of extracellular signal-regulated kinase (ERK), p38, c-Jun N-terminal kinase (JNK), Akt and Src. Further studies have demonstrated that the inhibitory effect of luteolin on intracellular signaling execution and proinflammatory cytokine expression is associated with resolution of oxidative stress and promotion of protein phosphatase activity. Together, these results suggest that luteolin suppresses NF-κB, STAT1 and IRF-1 signaling, thus attenuating inflammatory response of brain microglial cells.


Journal of Nutritional Biochemistry | 2013

Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats.

Cheng-Yi Chang; Yu-Hsiang Kuan; Jian-Ri Li; Wen-Ying Chen; Yen-Chuan Ou; Hung-Chuan Pan; Su-Lan Liao; Shue-Ling Raung; Chen-Jung Chang; Chun-Jung Chen

Cellular inflammatory response plays an important role in ischemic brain injury and anti-inflammatory treatments in stroke are beneficial. Dietary supplementation with docosahexaenoic acid (DHA) shows anti-inflammatory and neuroprotective effects against ischemic stroke. However, its effectiveness and its precise modes of neuroprotective action remain incompletely understood. This study provides evidence of an alternative target for DHA and sheds light on the mechanism of its physiological benefits. We report a global inhibitory effect of 3 consecutive days of DHA preadministration on circulating and intracerebral cellular inflammatory responses in a rat model of permanent cerebral ischemia. DHA exhibited a neuroprotective effect against ischemic deficits by reduction of behavioral disturbance, brain infarction, edema and blood-brain barrier disruption. The results of enzymatic assay, Western blot, real-time reverse transcriptase polymerase chain reaction and flow cytometric analysis revealed that DHA reduced central macrophages/microglia activation, leukocyte infiltration and pro-inflammatory cytokine expression and peripheral leukocyte activation after cerebral ischemia. In parallel with these immunosuppressive phenomena, DHA attenuated post-stroke oxidative stress, c-Jun N-terminal kinase (JNK) phosphorylation, c-Jun phosphorylation and activating protein-1 (AP-1) activation but further elevated ischemia-induced NF-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) expression. DHA treatment also had an immunosuppressive effect in lipopolysaccharide/interferon-γ-stimulated glial cultures by attenuating JNK phosphorylation, c-Jun phosphorylation and AP-1 activation and augmenting Nrf2 and HO-1 expression. In summary, we have shown that DHA exhibited neuroprotective and anti-inflammatory effects against ischemic brain injury and these effects were accompanied by decreased oxidative stress and JNK/AP-1 signaling as well as enhanced Nrf2/HO-1 expression.


Neurochemistry International | 2007

Induction of cyclooxygenase-2 expression by manganese in cultured astrocytes.

Su-Lan Liao; Yen-Chuan Ou; Shih-Yun Chen; An-Na Chiang; Chun-Jung Chen

Inflammatory and oxidative events are present in neurodegenerative disorders and appear to contribute to initiation and/or progression of the disease. Within the brain, redox-active metals, such as manganese, play an important role as components of proteins essential for neural function. However, increasing evidence implies its participation in neurodegenerative diseases involving immune modulation. Prostaglandins (PGs) are lipid mediators that participate in the regulation of physiological and pathophysiological processes, particularly during brain inflammation. In this study, we investigated whether the immune modulating action of manganese involved regulation of PGE2 production in cortical astrocytes. Within non-toxic concentrations, manganese caused an elevation in the expression of cyclooxygenase-2 (COX-2) mRNA and protein and increased PGE2 release. Manganese potentiated COX-2 expression and PGE2 generation by lipopolysaccharide/interferon-gamma-activated astrocytes. The inductive action of manganese was accompanied by generation of oxidative stress, activation of mitogen-activated protein kinases (MAPKs), AKT, and protein kinase C-alpha (PKC-alpha), and increased NF-kappaB and AP-1 DNA binding activities. The generation of reactive oxygen species (ROS) was critical to manganese-induced changes in astrocytes, including MAPKs, PKC-alpha, NF-kappaB, AP-1, and COX-2 expression but not AKT. Collectively, these data indicate that manganese might cause changes in neural activity through the modulation of oxidative and inflammatory events in astrocytes.


Journal of Virology | 2014

Infection of Pericytes In Vitro by Japanese Encephalitis Virus Disrupts the Integrity of the Endothelial Barrier

Chun-Jung Chen; Yen-Chuan Ou; Jian-Ri Li; Cheng-Yi Chang; Hung-Chuan Pan; Ching-Yi Lai; Su-Lan Liao; Shue-Ling Raung; Chen-Jung Chang

ABSTRACT Though the compromised blood-brain barrier (BBB) is a pathological hallmark of Japanese encephalitis-associated neurological sequelae, the underlying mechanisms and the specific cell types involved are not understood. BBB characteristics are induced and maintained by cross talk between brain microvascular endothelial cells and neighboring elements of the neurovascular unit. In this study, we show a potential mechanism of disruption of endothelial barrier integrity during the course of Japanese encephalitis virus (JEV) infection through the activation of neighboring pericytes. We found that cultured brain pericytes were susceptible to JEV infection but were without signs of remarkable cytotoxicity. JEV-infected pericytes were found to release biologically active molecules which activated ubiquitin proteasome, degraded zonula occludens-1 (ZO-1), and disrupted endothelial barrier integrity in cultured brain microvascular endothelial cells. Infection of pericytes with JEV was found to elicit elevated production of interleukin-6 (IL-6), which contributed to the aforementioned endothelial changes. We further demonstrated that ubiquitin-protein ligase E3 component n-recognin-1 (Ubr 1) was a key upstream regulator which caused proteasomal degradation of ZO-1 downstream of IL-6 signaling. During JEV central nervous system trafficking, endothelial cells rather than pericytes are directly exposed to cell-free viruses in the peripheral bloodstream. Therefore, the results of this study suggest that subsequent to primary infection of endothelial cells, JEV infection of pericytes might contribute to the initiation and/or augmentation of Japanese encephalitis-associated BBB breakdown in concerted action with other unidentified barrier disrupting factors.


Neurochemistry International | 2008

Opioids modulate post-ischemic progression in a rat model of stroke

Tsung-Kuei Kao; Yen-Chuan Ou; Su-Lan Liao; Wen-Ying Chen; Chun-Chiang Wang; Shih-Yun Chen; An-Na Chiang; Chun-Jung Chen

Alterations in the opioidergic system have been found in cerebral ischemia. Neuroprotection studies have demonstrated the involvement of the opioidergic system in cerebral ischemia/reperfusion (I/R). However, the neuroprotective mechanisms remain largely unclear. This study was conducted to investigate whether intracerebroventricular administration of opioidergic agonists has a neuroprotective effect against cerebral ischemia in rats and, if this proved to be the case, to determine the potential neuroprotective mechanisms. Using a focal cerebral I/R rat model, we demonstrated that the opioidergic agents, BW373U86 (delta agonist) and Dynorphin A 1-13 (kappa agonist), but not TAPP (mu agonist), attenuated cerebral ischemic injury as manifested in the reduction of cerebral infarction and preservation of neurons. The antagonism assay showed that the neuroprotective effect of Dynorphin A was attenuated by nor-Binaltorphimine (kappa antagonist). Surprisingly, BW373U86-induced neuroprotection was not changed by Naltrindole (delta antagonist). These findings indicate that BW373U86 and Dynorphin A exerted distinct neuroprotection against ischemia via opioid-independent and -dependent mechanisms, respectively. The post-ischemic protection in beneficial treatments was accompanied by alleviations in brain edema, inflammatory cell infiltration, and pro-inflammatory cytokine interleukin 6 (IL-6) expression. In vitro cell study further demonstrated that the opioidergic agonists, delta and kappa, but not mu, attenuated IL-6 production from stimulated glial cells. Our findings indicate that opioidergic agents have a role in post-ischemic progression through both opioid-dependent and -independent mechanisms. In spite of the distinct-involved action mechanism, the potential neuroprotective effect of opioidergic compounds was associated with immune suppression. Taken together, these findings suggest a potential role for opioidergic agents in the therapeutic consideration of neuroinflammatory diseases. However, a better understanding of the mechanisms involved is necessary before this therapeutic potential can be realized.


European Journal of Neuroscience | 2006

l‐Glutamate activates RhoA GTPase leading to suppression of astrocyte stellation

Chun-Jung Chen; Yen-Chuan Ou; Shih-Yi Lin; Su-Lan Liao; Yong-San Huang; An-Na Chiang

The actin cytoskeleton is known to support cellular morphological changes. Rho family small GTPases function as switching molecules to promote the convergence of both extracellular and intracellular signals in regulating cytoskeletal organization. Evidence indicates that l‐glutamate suppresses morphological changes of astrocytes over a broad spectrum. To test the possibility that l‐glutamate affects cytoskeletal reorganization, we investigated its effect on morphological changes induced by manganese exposure. l‐Glutamate concentration‐dependently prevented and reversed manganese‐induced astrocyte stellation and cytoskeletal disruption. The suppressive effect of l‐glutamate on manganese‐induced stellation was mediated by the activation of the glutamate transporter rather than ionotropic or metabotropic glutamate receptors. Pharmacological and biochemical approaches revealed the involvement of Ras homolog gene family, member A (RhoA) activation in l‐glutamate‐mediated suppression of manganese‐induced stellation. The activation of RhoA by l‐glutamate was partly through the up‐regulation of guanine nucleotide exchange factor phosphorylation and was abrogated by competitive nonsubstrate inhibitors. Furthermore, the hyperphosphorylation of myosin light chain and cofilin through the activation of RhoA following l‐glutamate treatment synergistically stabilized actin stress fibres. These results suggest that manganese‐induced stellation is suppressed by a mechanism involving glutamate transporters. Our in vitro findings also strongly indicate that astrocyte morphological plasticity is under the control of RhoA and that manganese and l‐glutamate regulate astrocyte morphology by modulating this switching molecule under culture conditions.

Collaboration


Dive into the Yen-Chuan Ou's collaboration.

Top Co-Authors

Avatar

Chun-Jung Chen

China Medical University (PRC)

View shared research outputs
Top Co-Authors

Avatar

Su-Lan Liao

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Cheng-Yi Chang

Central Taiwan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wen-Ying Chen

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Jian-Ri Li

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Hung-Chuan Pan

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Yu-Hsiang Kuan

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Shih-Yi Lin

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Ching-Yi Lai

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Shih-Yun Chen

National Chung Hsing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge