Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeon Bok Kim is active.

Publication


Featured researches published by Yeon Bok Kim.


Journal of Agricultural and Food Chemistry | 2012

Metabolic Profiling of Glucosinolates, Anthocyanins, Carotenoids, and Other Secondary Metabolites in Kohlrabi (Brassica oleracea var. gongylodes)

Woo Tae Park; Jae Kwang Kim; Suhyoung Park; Sang-Won Lee; Xiaohua Li; Yeon Bok Kim; Md. Romij Uddin; Nam Il Park; Sun-Ju Kim; Sang Un Park

We profiled and quantified glucosinolates, anthocyanins, carotenoids, and other secondary metabolites in the skin and flesh of pale green and purple kohlrabis. Analysis of these distinct kohlrabis revealed the presence of 8 glucosinolates, 12 anthocyanins, 2 carotenoids, and 7 phenylpropanoids. Glucosinolate contents varied among the different parts and types of kohlrabi. Glucoerucin contents were 4-fold higher in the flesh of purple kohlrabi than those in the skin. Among the 12 anthocyanins, cyanidin 3-(feruloyl)(sinapoyl) diglucoside-5-glucoside levels were the highest. Carotenoid levels were much higher in the skins than the flesh of both types of kohlrabi. The levels of most phenylpropanoids were higher in purple kohlrabi than in pale green ones. trans-Cinnamic acid content was 12.7-fold higher in the flesh of purple kohlrabi than that in the pale green ones. Thus, the amounts of glucosinolates, anthocyanins, carotenoids, and phenylpropanoids varied widely, and the variations in these compounds between the two types of kohlrabi were significant.


Journal of Agricultural and Food Chemistry | 2013

Enhanced Accumulation of Phytosterol and Triterpene in Hairy Root Cultures of Platycodon grandiflorum by Overexpression of Panax ginseng 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase

Yong-Kyoung Kim; Jae-Kwang Kim; Yeon Bok Kim; Sang-Hyun Lee; Soo-Un Kim; Sang Un Park

3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the rate-limiting step in the mevalonate pathway. To elucidate the functions of HMGR in triterpene biosynthesis, Platycodon grandiflorum was transformed with a construct expressing Panax ginseng HMGR (PgHMGR). We used PCR analysis to select transformed hairy root lines and selected six lines for further investigation. Quantitative real-time PCR showed higher expression levels of HMGR and total platycoside levels (1.5-2.5-fold increase) in transgenic lines than in controls. Phytosterols levels were also 1.1-1.6-fold higher in transgenic lines than in controls. Among these lines, line T7 produced the highest level of total platycosides (1.60 ± 0.2 mg g(-1) dry weight) and α-spinasterol (1.78 ± 0.16 mg g(-1) dry weight). These results suggest that metabolic engineering of P. grandiflorum by Agrobacterium-mediated genetic transformation may enhance production of phytosterols and triterpenoids.


BMC Genomics | 2013

Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense

Shicheng Zhao; Pham Anh Tuan; Xiaohua Li; Yeon Bok Kim; HyeRan Kim; Chun Geon Park; Jingli Yang; Cheng Hao Li; Sang Un Park

BackgroundLycium chinense is well known in traditional Chinese herbal medicine for its medicinal value and composition, which have been widely studied for decades. However, further research on Lycium chinense is limited due to the lack of transcriptome and genomic information.ResultsThe transcriptome of L. chinense was constructed by using an Illumina HiSeq 2000 sequencing platform. All 56,526 unigenes with an average length of 611 nt and an N50 equaling 848 nt were generated from 58,192,350 total raw reads after filtering and assembly. Unigenes were assembled by BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. Using these transcriptome data, the majority of genes that are associated with phenylpropanoid biosynthesis in L. chinense were identified. In addition, phenylpropanoid biosynthesis-related gene expression and compound content in different organs were analyzed. We found that most phenylpropanoid genes were highly expressed in the red fruits, leaves, and flowers. An important phenylpropanoid, chlorogenic acid, was also found to be extremely abundant in leaves.ConclusionsUsing Illumina sequencing technology, we have identified the function of novel homologous genes that regulate metabolic pathways in Lycium chinense.


Molecules | 2013

MYB Transcription Factors Regulate Glucosinolate Biosynthesis in Different Organs of Chinese Cabbage (Brassica rapa ssp. pekinensis)

Yeon Bok Kim; Xiaohua Li; Sun-Ju Kim; Haeng Hoon Kim; Jeongyeo Lee; HyeRan Kim; Sang Un Park

In this study, we investigated the expression of seven MYB transcription factors (a total of 17 genes that included Dof1.1, IQD1-1, MYB28, MYB29, MYB34, MYB51, and MYB122 and their isoforms) involved in aliphatic and indolic glucosinolate (GSL) biosynthesis and analyzed the aliphatic and indolic GSL content in different organs of Chinese cabbage (Brassica rapassp. Pekinensis). MYB28 and MYB29 expression in the stem was dramatically different when compared with the levels in the other organs. MYB34, MYB122, MYB51, Dof1.1, and IQD1-1 showed very low transcript levels among different organs. HPLC analysis showed that the glucosinolates (GSLs) consisted of five aliphatic GSLs (progoitrin, sinigrin, glucoalyssin, gluconapin, and glucobrassicanapin) and four indolic GSLs (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxygluco-brassicin, and neoglucobrassicin). Aliphatic GSLs exhibited 63.3% of the total GSLs content, followed by aromatic GSL (19.0%), indolic GSLs (10%), and unknown GSLs (7.7%) in different organs of Chinese cabbage. The total GSL content of different parts (ranked in descending order) was as follows: seed > flower > young leaves > stem > root > old leaves. The relationship between GSLs accumulation and expression of GSLs biosynthesis MYB TFs genes in different organs may be helpful to understand the mechanism of MYB TFs regulating GSL biosynthesis in Chinese cabbage.


PLOS ONE | 2013

Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate.

Yeon Bok Kim; Jae Kwang Kim; Md. Romij Uddin; Hui Xu; Woo Tae Park; Pham Anh Tuan; Xiaohua Li; Eunsook Chung; Jai-Heon Lee; Sang Un Park

This study investigated the effect of methyl jasmonate (MeJA) on metabolic profiles and rosmarinic acid (RA) biosynthesis in cell cultures of Agastache rugosa Kuntze. Transcript levels of phenylpropanoid biosynthetic genes, i.e., ArPAL, Ar4CL, and ArC4H, maximally increased 4.5-fold, 3.4-fold, and 3.5-fold, respectively, compared with the untreated controls, and the culture contained relatively high amounts of RA after exposure of cells to 50 µM MeJA. RA levels were 2.1-, 4.7-, and 3.9-fold higher after exposure to 10, 50, and 100 µM MeJA, respectively, than those in untreated controls. In addition, the transcript levels of genes attained maximum levels at different time points after the initial exposure. The transcript levels of ArC4H and Ar4CL were transiently induced by MeJA, and reached a maximum of up to 8-fold at 3 hr and 6 hr, respectively. The relationships between primary metabolites and phenolic acids in cell cultures of A. rugosa treated with MeJA were analyzed by gas chromatography coupled with time-of-flight mass spectrometry. In total, 45 metabolites, including 41 primary metabolites and 4 phenolic acids, were identified from A. rugosa. Metabolite profiles were subjected to partial least square-discriminate analysis to evaluate the effects of MeJA. The results indicate that both phenolic acids and precursors for the phenylpropanoid biosynthetic pathway, such as aromatic amino acids and shikimate, were induced as a response to MeJA treatment. Therefore, MeJA appears to have an important impact on RA accumulation, and the increased RA accumulation in the treated cells might be due to activation of the phenylpropanoid genes ArPAL, ArC4H, and Ar4CL.


Journal of Agricultural and Food Chemistry | 2013

Accumulation of anthocyanin and associated gene expression in radish sprouts exposed to light and methyl jasmonate.

Woo Tae Park; Yeon Bok Kim; Jeong Min Seo; Sun-Ju Kim; Eunsook Chung; Jai-Heon Lee; Sang Un Park

Radish (Raphanus sativus) sprouts have received attention as an important dietary vegetable in Asian countries. The flavonoid pathway leading to anthocyanin biosynthesis in radishes is induced by multiple regulatory genes as well as various developmental and environmental factors. This study investigated anthocyanin accumulation and the transcript level of associated genes in radish sprouts exposed to light and methyl jasmonate (MeJA). The anthocyanin content of sprouts exposed to light and treated with MeJA was higher than that of sprouts grown under dark conditions without MeJA, and the highest anthocyanin content was observed within 6-9 days after sowing (DAS). Transcript levels of almost all genes were increased in radish sprouts grown in light conditions with 100 μM MeJA relative to sprouts grown under dark conditions with or without MeJA treatment, especially at 3 DAS. The results suggest that light and MeJA treatment applied together during radish seedling development enhance anthocyanin accumulation.


Journal of Agricultural and Food Chemistry | 2013

Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

Pham Anh Tuan; Aye Aye Thwe; Yeon Bok Kim; Jae-Kwang Kim; Sun-Ju Kim; Sang-Hyun Lee; Sun-Ok Chung; Sang Un Park

In this study, the optimum wavelengths of light required for carotenoid biosynthesis were determined by investigating the expression levels of carotenoid biosynthetic genes and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.) exposed to white, blue, and red light-emitting diodes (LEDs). Most carotenoid biosynthetic genes showed higher expression in sprouts irradiated with white light at 8 days after sowing than in those irradiated with blue and red lights. The dominant carotenoids in tartary buckwheat sprouts were lutein and β-carotene. The richest accumulation of total carotenoids was observed in sprouts grown under white light (1282.63 μg g(-1) dry weight), which was relatively higher than that in sprouts grown under blue and red lights (940.86 and 985.54 μg g(-1), respectively). This study might establish an effective strategy for maximizing the production of carotenoids and other important secondary metabolites in tartary buckwheat sprouts by using LED technology.


PLOS ONE | 2013

Enhancement of Anti-Inflammatory Activity of Aloe vera Adventitious Root Extracts through the Alteration of Primary and Secondary Metabolites via Salicylic Acid Elicitation

Yun Sun Lee; Hyun Kyoung Ju; Yeon Jeong Kim; Tae-Gyu Lim; Romij Uddin; Yeon Bok Kim; Jin Hong Baek; Sung Won Kwon; Ki Won Lee; Hak Soo Seo; Sang Un Park; Tae-Jin Yang

Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.


Journal of Agricultural and Food Chemistry | 2013

Metabolomic Analysis and Differential Expression of Anthocyanin Biosynthetic Genes in White- and Red-Flowered Buckwheat Cultivars (Fagopyrum esculentum)

Yeon Bok Kim; Soo-Yun Park; Aye Aye Thwe; Jeong Min Seo; Tastsuro Suzuki; Sun-Ju Kim; Jae-Kwang Kim; Sang Un Park

Red-flowered buckwheat ( Fagopyrum esculentum ) is used in the production of tea, juice, and alcohols after the detoxification of fagopyrin. In order to investigate the metabolomics and regulatory of anthocyanin production in red-flowered (Gan-Chao) and white-flowered (Tanno) buckwheat cultivars, quantitative real-time RT-PCR (qRT-PCR), gas chromatography time-of-flight mass spectrometry (GC-TOFMS), and high performance liquid chromatography (HPLC) were conducted. The transcriptions of FePAL, FeC4H, Fe4CL1, FeF3H, FeANS, and FeDFR increased gradually from flowering stage 1 and reached their highest peaks at flowering stage 3 in Gan-Chao flower. In total 44 metabolites, 18 amino acids, 15 organic acids, 7 sugars, 3 sugar alcohols, and 1 amine were detected in Gan-Chao flowers. Two anthocyanins, cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside, were identified in Gan-Chao cultivar. The first component of the partial least-squares to latent structures-discriminate analysis (PLS-DA) indicated that high amounts of phenolic, shikimic, and pyruvic acids were present in Gan-Chao. We suggest that transcriptions of genes involved in anthocyanin biosynthesis, anthocyanin contents, and metabolites have correlation in the red-flowered buckwheat Gan-Chao flowers. Our results may be helpful to understand anthocyanin biosynthesis in red-flowered buckwheat.


Journal of Agricultural and Food Chemistry | 2015

Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.)

Shicheng Zhao; Chang Ha Park; Xiaohua Li; Yeon Bok Kim; Jingli Yang; Gyoo Byung Sung; Nam Il Park; Soonok Kim; Sang Un Park

Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

Collaboration


Dive into the Yeon Bok Kim's collaboration.

Top Co-Authors

Avatar

Sang Un Park

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Xiaohua Li

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Haeng Hoon Kim

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Aye Aye Thwe

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Sun-Ju Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Pham Anh Tuan

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Nam Il Park

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Woo Tae Park

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jae Kwang Kim

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

YeJi Kim

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge