Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeon Joo Choi is active.

Publication


Featured researches published by Yeon Joo Choi.


Journal of Biochemistry and Molecular Biology | 2014

PEP-1-HO-1 prevents MPTP-induced degeneration of dopaminergic neurons in a Parkinson's disease mouse model.

Jong Kyu Youn; Dae-Won Kim; Seung Tae Kim; Sung Yeon Park; Eun Ji Yeo; Yeon Joo Choi; Hae-Ran Lee; Duk-Soo Kim; Sung-Woo Cho; Kyu Hyung Han; Jinseu Park; Won Sik Eum; Hyun Sook Hwang; Soo Young Choi

Heme oxygenase-1 (HO-1) degrades heme to carbon dioxide, biliverdin, and Fe2+, which play important roles in various biochemical processes. In this study, we examined the protective function of HO-1 against oxidative stress in SH-SY5Y cells and in a Parkinson’s disease mouse model. Western blot and fluorescence microscopy analysis demonstrated that PEP-1-HO-1, fused with a PEP-1 peptide can cross the cellular membranes of human neuroblastoma SH-SY5Y cells. In addition, the transduced PEP-1-HO-1 inhibited generation of reactive oxygen species (ROS) and cell death caused by 1-methyl-4-phenylpyridinium ion (MPP+). In contrast, HO-1, which has no ability to transduce into SH-SY5Y cells, failed to reduce MPP+-induced cellular toxicity and ROS production. Furthermore, intraperitoneal injected PEP-1-HO-1 crossed the blood-brain barrier in mouse brains. In a PD mouse model, PEP-1-HO-1 significantly protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity and dopaminergic neuronal death. Therefore, PEP-1-HO-1 could be a useful agent in treating oxidative stress induced ailments including PD. [BMB Reports 2014; 47(10): 569-574]


Molecular Immunology | 2015

Tat-biliverdin reductase A inhibits inflammatory response by regulation of MAPK and NF-κB pathways in Raw 264.7 cells and edema mouse model.

Hye Ri Kim; Dae-Won Kim; Hyo Sang Jo; Su Bin Cho; Jung Hwan Park; Chi Hern Lee; Yeon Joo Choi; Eun Ji Yeo; Sung Yeon Park; Seung Tae Kim; Yeon Hee Yu; Duk-Soo Kim; Hyun Ah Kim; Sung-Woo Cho; Kyu Hyung Han; Jinseu Park; Won Sik Eum; Soo Young Choi

Reactive oxygen species (ROS) accumulation induces oxidative stress and cell damage, which then activates several signaling pathways and triggers inflammatory response. Biliverdin is a natural product of heme metabolism which is converted to bilirubin by the enzyme biliverdin reductase A (BLVRA) which also plays a role in antioxidant activity via the ROS scavenging activity of bilirubin. In this study, we examined the anti-inflammatory and anti-apoptotic effects of Tat-BLVRA protein on lipopolysaccharide (LPS)-induced inflammation in Raw 264.7 macrophage cells. Transduction of Tat-BLVRA protein into Raw 264.7 cells and mice ear tissue was tested by Western blot analysis and immunohistochemical analysis. Tat-BLVRA protein was effective in inhibiting mitogen activated protein kinases (MAPKs), Akt and NF-κB activation, intracellular ROS production and DNA fragmentation. Also, Tat-BLVRA protein significantly inhibited the expression of cytokines, COX-2, and iNOS. In a 12-O-tetradecanoylphobol 13-acetate (TPA)-induced mouse model, mice ears treated with Tat-BLVRA protein showed decreased ear thickness and weight, as well as inhibited MAPKs activation and cytokine expression. Thus we suggested that Tat-BLVRA protein may provide an effective therapeutic agent for inflammatory skin diseases.


Journal of Biochemistry and Molecular Biology | 2016

Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death.

Hyo Sang Jo; Hyeon Ji Yeo; Hyun Ju Cha; Sang Jin Kim; Su Bin Cho; Jung Hwan Park; Chi Hern Lee; Eun Ji Yeo; Yeon Joo Choi; Won Sik Eum; Soo Young Choi

Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Both Tat-DJ-1 proteins were transduced into RINm5F cells. WT Tat-DJ-1 proteins significantly protected against cell death from cytokines by reducing intracellular toxicities. Also, WT Tat-DJ-1 proteins markedly regulated cytokines-induced pro- and anti-apoptosis proteins. However, M26I Tat-DJ-1 protein showed relatively low protective effects, as compared to WT Tat-DJ-1 protein. Our experiments demonstrated that WT Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death by suppressing intracellular toxicities and regulating apoptosisrelated protein expression. Thus, WT Tat-DJ-1 protein could potentially serve as a therapeutic agent for DM and cytokine related diseases. [BMB Reports 2016; 49(5): 297-302]


Biotechnology Letters | 2017

Tat-DJ-1 enhances cell survival by inhibition of oxidative stress, NF-κB and MAPK activation in HepG2 cells

Hyo Sang Jo; Eun Ji Yeo; Min Jea Shin; Yeon Joo Choi; Hyeon Ji Yeo; Su Bin Cho; Jung Hwan Park; Chi Hern Lee; Won Sik Eum; Soo Young Choi

ObjectivesTo identify the protective effect of DJ-1 protein against oxidative stress-induced HepG2 cell death, we used cell-permeable wild type (WT) and a mutant (C106A Tat-DJ-1) protein.ResultsBy using western blotting and fluorescence microscopy, we observed WT and C106A Tat-DJ-1 proteins were efficiently transduced into HepG2 cells. Transduced WT Tat-DJ-1 proteins increased cell survival and protected against DNA fragmentation and intracellular ROS generation levels in H2O2-exposed HepG2 cells. At the same time, transduced WT Tat-DJ-1 protein significantly inhibited NF-κB and MAPK (JNK and p38) activation as well as regulated the Bcl-2 and Bax expression levels. However, C106A Tat-DJ-1 protein did not show any protective effect against cell death responses in H2O2-exposed HepG2 cells.ConclusionsOxidative stress-induced HepG2 cell death was significantly reduced by transduced WT Tat-DJ-1 protein, not by C106A Tat-DJ-1 protein. Thus, transduction of WT Tat-DJ-1 protein could be a novel strategy for promoting cell survival in situations of oxidative stress-induced HepG2 cell death.


Molecular Brain | 2017

Tat-HSP22 inhibits oxidative stress-induced hippocampal neuronal cell death by regulation of the mitochondrial pathway

Hyo Sang Jo; Dae Won Kim; Min Jea Shin; Su Bin Cho; Jung Hwan Park; Chi Hern Lee; Eun Ji Yeo; Yeon Joo Choi; Hyeon Ji Yeo; Eun Jeong Sohn; Ora Son; Sung-Woo Cho; Duk-Soo Kim; Yeon Hee Yu; Keun Wook Lee; Jinseu Park; Won Sik Eum; Soo Young Choi

Oxidative stress plays an important role in the progression of various neuronal diseases including ischemia. Heat shock protein 22 (HSP22) is known to protect cells against oxidative stress. However, the protective effects and mechanisms of HSP22 in hippocampal neuronal cells under oxidative stress remain unknown. In this study, we determined whether HSP22 protects against hydrogen peroxide (H2O2)-induced oxidative stress in HT-22 using Tat-HSP22 fusion protein. We found that Tat-HSP22 transduced into HT-22 cells and that H2O2-induced cell death, oxidative stress, and DNA damage were significantly reduced by Tat-HSP22. In addition, Tat-HSP22 markedly inhibited H2O2-induced mitochondrial membrane potential, cytochrome c release, cleaved caspase-3, and Bax expression levels, while Bcl-2 expression levels were increased in HT-22 cells. Further, we showed that Tat-HSP22 transduced into animal brain and inhibited cleaved-caspase-3 expression levels as well as significantly inhibited hippocampal neuronal cell death in the CA1 region of animals in the ischemic animal model. In the present study, we demonstrated that transduced Tat-HSP22 attenuates oxidative stress-induced hippocampal neuronal cell death through the mitochondrial signaling pathway and plays a crucial role in inhibiting neuronal cell death, suggesting that Tat-HSP22 protein may be used to prevent oxidative stress-related brain diseases including ischemia.


Medicinal Chemistry Research | 2016

Tat-DJ-1 inhibits oxidative stress-mediated RINm5F cell death through suppression of NF-κB and MAPK activation

Hyo Sang Jo; Hyun Ju Cha; Sang Jin Kim; Hyeon Ji Yeo; Su Bin Cho; Jung Hwan Park; Chi Hern Lee; Eun Ji Yeo; Yeon Joo Choi; Won Sik Eum; Soo Young Choi

Oxidative stress is highly involved in the development of diabetes mellitus by destruction of pancreatic β-cells. DJ-1 is an antioxidant protein and DJ-1 expression levels are known to be reduced in diabetes mellitus. Thus, we examined the effects of DJ-1 protein against oxidative stress-induced pancreatic β-cell (RINm5F) death using cell permeable wild-type and mutant-type (C106A) Tat-DJ-1 proteins, which both efficiently transduced into RINm5F cells. Intracellular stability of wild-type Tat-DJ-1 persisted two times longer than C106A Tat-DJ-1. Wild-type Tat-DJ-1 protein markedly protected cells from hydrogen peroxide-induced toxicities such as cell death, reactive oxygen species generation, and DNA fragmentation. Further, wild-type Tat-DJ-1 protein significantly inhibited hydrogen peroxide-induced activation of mitogen-activated protein kinases and NF-κB signaling. On the other hand, C106A Tat-DJ-1 protein did not show the same protective effects. These results indicate that wild-type Tat-DJ-1 inhibits oxidative stress-induced cellular toxicity and activation of mitogen-activated protein kinases and NF-κB signals in RINm5F cells. These results suggest that wild-type Tat-DJ-1 protein may be a potential therapeutic agent against diabetes mellitus or toward the prevention of pancreatic β-cell destruction.


Journal of Biochemistry and Molecular Biology | 2016

Protective effects of Tat-NQO1 against oxidative stress-induced HT-22 cell damage, and ischemic injury in animals

Hyo Sang Jo; Duk-Soo Kim; Eun Hee Ahn; Dae-Won Kim; Min Jea Shin; Su Bin Cho; Jung Hwan Park; Chi Hern Lee; Eun Ji Yeo; Yeon Joo Choi; Hyeon Ji Yeo; Christine Seok Young Chung; Sung-Woo Cho; Kyu Hyung Han; Jinseu Park; Won Sik Eum; Soo Young Choi

Oxidative stress is closely associated with various diseases and is considered to be a major factor in ischemia. NAD(P)H: quinone oxidoreductase 1 (NQO1) protein is a known antioxidant protein that plays a protective role in various cells against oxidative stress. We therefore investigated the effects of cell permeable Tat-NQO1 protein on hippocampal HT-22 cells, and in an animal ischemia model. The Tat-NQO1 protein transduced into HT-22 cells, and significantly inhibited against hydrogen peroxide (H2O2)-induced cell death and cellular toxicities. Tat-NQO1 protein inhibited the Akt and mitogen activated protein kinases (MAPK) activation as well as caspase-3 expression levels, in H2O2 exposed HT-22 cells. Moreover, Tat-NQO1 protein transduced into the CA1 region of the hippocampus of the animal brain and drastically protected against ischemic injury. Our results indicate that Tat-NQO1 protein exerts protection against neuronal cell death induced by oxidative stress, suggesting that Tat-NQO1 protein may potentially provide a therapeutic agent for neuronal diseases.


Journal of Biochemistry and Molecular Biology | 2017

Effects of PEP-1-FK506BP on cyst formation in polycystic kidney disease

Hyo Sang Jo; Won Sik Eum; Eun Young Park; Je Young Ko; Do Yeon Kim; Dae Won Kim; Min Jea Shin; Ora Son; Su Bin Cho; Jung Hwan Park; Chi Hern Lee; Eun Ji Yeo; Hyeon Ji Yeo; Yeon Joo Choi; Jong Kyu Youn; Sung-Woo Cho; Jinseu Park; Jong Hoon Park; Soo Young Choi

Polycystic kidney disease (PKD) is one of the most common inherited disorders, involving progressive cyst formation in the kidney that leads to renal failure. FK506 binding protein 12 (FK506BP) is an immunophilin protein that performs multiple functions, including regulation of cell signaling pathways and survival. In this study, we determined the roles of PEP-1-FK506BP on cell proliferation and cyst formation in PKD cells. Purified PEP-1-FK506BP transduced into PKD cells markedly inhibited cell proliferation. Also, PEP-1-FK506BP drastically inhibited the expression levels of p-Akt, p-p70S6K, p-mTOR, and p-ERK in PKD cells. In a 3D-culture system, PEP-1-FK506BP significantly reduced cyst formation. Furthermore, the combined effects of rapamycin and PEP-1-FK506BP on cyst formation were markedly higher than the effects of individual treatments. These results suggest that PEP-1-FK506BP delayed cyst formation and could be a new therapeutic strategy for renal cyst formation in PKD.


Free Radical Biology and Medicine | 2016

Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults.

Min Jea Shin; Dae Won Kim; Hyo Sang Jo; Su Bin Cho; Jung Hwan Park; Chi Hern Lee; Eun Ji Yeo; Yeon Joo Choi; Ji An Kim; Jung Soon Hwang; Eun Jeong Sohn; Ji-Heon Jeong; Duk-Soo Kim; Hyeok Yil Kwon; Yong-Jun Cho; Keunwook Lee; Kyu Hyung Han; Jinseu Park; Won Sik Eum; Soo Young Choi

Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders.


Journal of the Neurological Sciences | 2015

Effects of low doses of Tat-PIM2 protein against hippocampal neuronal cell survival

Su Jung Woo; Min Jea Shin; Dae-Won Kim; Hyo Sang Jo; Ji In Yong; Eun Ji Ryu; Hyun Ju Cha; Sang Jin Kim; Hyeon Ji Yeo; Su Bin Cho; Jung Hwan Park; Chi Hern Lee; Eun Ji Yeo; Yeon Joo Choi; Sungyeon Park; Seung Kwon Im; Duk-Soo Kim; Oh-Shin Kwon; Jinseu Park; Won Sik Eum; Soo Young Choi

Oxidative stress is considered a major factor in various neuronal diseases including ischemia-reperfusion injury. Proviral Integration Moloney 2 (PIM2) proteins, one of the families of PIM kinases, play crucial roles in cell survival. However, the functions of PIM2 protein against ischemia are not understood. Therefore, the protective effects of PIM2 against oxidative stress-induced hippocampal HT22 cell death and brain ischemic injury were evaluated using Tat-PIM2, a cell permeable fusion protein. Tat-PIM2 protein transduced into hippocampal HT22 cells. Low doses of transduced Tat-PIM2 protein protected against oxidative stress-induced cell death including DNA damage and markedly inhibited the activation of mitogen activated protein kinase (MAPKs), NF-κB and the expression levels of Bax protein. Furthermore, Tat-PIM2 protein transduced into the CA1 region of the hippocampus and significantly prevented neuronal cell death in an ischemic insult animal model. These results indicated that low doses of Tat-PIM2 protein protects against oxidative stress-induced neuronal cell death, suggesting low doses of Tat-PIM2 protein provides a potential therapeutic agent against oxidative stress-induced neuronal diseases including ischemia.

Collaboration


Dive into the Yeon Joo Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge