Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeong-Bin Baek is active.

Publication


Featured researches published by Yeong-Bin Baek.


Veterinary Microbiology | 2015

Genetic diversity of the VP7, VP4 and VP6 genes of Korean porcine group C rotaviruses

Young-Ju Jeong; Jelle Matthijnssens; Deok-Song Kim; Ji-Yun Kim; Mia Madel Alfajaro; Jun-Gyu Park; Myra Hosmillo; Kyu-Yeol Son; Mahmoud Soliman; Yeong-Bin Baek; Joseph Kwon; Jong-Soon Choi; Mun-Il Kang; Kyoung-Oh Cho

Porcine group C rotaviruses (RVCs) are considered important pathogens due to their economic impact on pig industry and may also cross the host species barrier toward humans. Unlike RVA, however, genetic and phylogenetic data on RVCs from pigs and other host species are scarce. In the present study, full-length ORF sequences of 26 VP7, 9 VP4 and 9 VP6 genes of Korean porcine RVC strains were compared with those of other known RVC strains by phylogenetic analyses and pairwise identity frequency graphs. Applying the established 85% nucleotide identity cut-off value for RVC VP7 classification, the 26 Korean porcine RVC strains belonged to the G1, G3, G6 and G7 genotypes. Although more complete RVC VP4 sequences are warranted before a definitive cut-off value could be determined, a provisional 83% nucleotide cut-off value proposed for RVC VP4 classification resulted in 7 P-genotypes, 5 of which possessed porcine RVC strains. A 90% nucleotide cut-off value for VP6 divided RVC strains into 7 I-genotypes, 5 of which had porcine RVC strains. G/P/I-genotype comparisons suggested the occurrence of rather frequent reassortment events among Korean porcine RVC strains, and strong geographical differences in the distribution of RVC G-genotypes worldwide. Our data indicate that a large genetic diversity exists among porcine RVC strains. For the final genotype determination of each gene segment, more intensified epidemiological studies on animal and human RVC strains throughout the world are needed.


Journal of Virology | 2016

Porcine Sapelovirus Uses α2,3-Linked Sialic Acid on GD1a Ganglioside as a Receptor

Deok-Song Kim; Kyu-Yeol Son; Kyung-Min Koo; Ji-Yun Kim; Mia Madel Alfajaro; Jun-Gyu Park; Myra Hosmillo; Mahmoud Soliman; Yeong-Bin Baek; Eun-Hyo Cho; Ju-Hwan Lee; Mun-Il Kang; Ian Goodfellow; Kyoung-Oh Cho

ABSTRACT The receptor(s) for porcine sapelovirus (PSV), which causes diarrhea, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs, remains largely unknown. Given the precedent for other picornaviruses which use terminal sialic acids (SAs) as receptors, we examined the role of SAs in PSV binding and infection. Using a variety of approaches, including treating cells with a carbohydrate-destroying chemical (NaIO4), mono- or oligosaccharides (N-acetylneuraminic acid, galactose, and 6′-sialyllactose), linkage-specific sialidases (neuraminidase and sialidase S), lectins (Maakia amurensis lectin and Sambucus nigra lectin), proteases (trypsin and chymotrypsin), and glucosylceramide synthase inhibitors (dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and phospholipase C), we demonstrated that PSV could recognize α2,3-linked SA on glycolipids as a receptor. On the other hand, PSVs had no binding affinity for synthetic histo-blood group antigens (HBGAs), suggesting that PSVs could not use HBGAs as receptors. Depletion of cell surface glycolipids followed by reconstitution studies indicated that GD1a ganglioside, but not other gangliosides, could restore PSV binding and infection, further confirming α2,3-linked SA on GD1a as a PSV receptor. Our results could provide significant information on the understanding of the life cycle of sapelovirus and other picornaviruses. For the broader community in the area of pathogens and pathogenesis, these findings and insights could contribute to the development of affordable, useful, and efficient drugs for anti-sapelovirus therapy. IMPORTANCE The porcine sapelovirus (PSV) is known to cause enteritis, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs. However, the receptor(s) that the PSV utilizes to enter host cells remains largely unknown. Using a variety of approaches, we showed that α2,3-linked terminal sialic acid (SA) on the cell surface GD1a ganglioside could be used for PSV binding and infection as a receptor. On the other hand, histo-blood group antigens also present in the cell surface carbohydrates could not be utilized as PSV receptors for binding and infection. These findings should contribute to the understanding of the sapelovirus life cycle and to the development of affordable, useful and efficient drugs for anti-sapelovirus therapy.


Journal of General Virology | 2016

Pathogenesis of Korean Sapelovirus A in piglets and chicks

Deok Song Kim; Mun-Il Kang; Kyu-Yeol Son; Geon-Yong Bak; Jun-Gyu Park; Myra Hosmillo; Ja-Young Seo; Ji-Yun Kim; Mia Madel Alfajaro; Mahmoud Soliman; Yeong-Bin Baek; Eun-Hyo Cho; Ju-Hwan Lee; Joseph Kwon; Jong-Soon Choi; Ian Goodfellow; Kyoung-Oh Cho

Sapelovirus A (SV-A), formerly known as porcine sapelovirus as a member of a new genus Sapelovirus, is known to cause enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in pigs. We have recently identified α2,3-linked sialic acid on GD1a ganglioside as a functional SV-A receptor rich in the cells of pigs and chickens. However, the role of GD1a in viral pathogenesis remains elusive. Here, we demonstrated that a Korean SV-A strain could induce diarrhoea and intestinal pathology in piglets but not in chicks. Moreover, this Korean SV-A strain had mild extra-intestinal tropisms appearing as mild, non-suppurative myelitis, encephalitis and pneumonia in piglets, but not in chicks. By real-time reverse transcription (RT) PCR, higher viral RNA levels were detected in faecal samples than in sera or extra-intestinal organs from virus-inoculated piglets. Immunohistochemistry confirmed that high viral antigens were detected in the epithelial cells of intestines from virus-inoculated piglets but not from chicks. This Korean SV-A strain could bind the cultured cell lines originated from various species, but replication occurred only in cells of porcine origin. These data indicated that this Korean SV-A strain could replicate and induce pathology in piglets but not in chicks, suggesting that additional porcine-specific factors are required for virus entry and replication. In addition, this Korean SV-A strain is enteropathogenic, but could spread to the bloodstream from the gut and disseminate to extra-intestinal organs and tissues. These results will contribute to our understanding of SV-A pathogenesis so that efficient anti-sapelovirus drugs and vaccines could be developed in the future.


PLOS Pathogens | 2018

Activation of PI3K, Akt, and ERK during early rotavirus infection leads to V-ATPase-dependent endosomal acidification required for uncoating

Mahmoud Soliman; Ja-Young Seo; Deok-Song Kim; Ji-Yun Kim; Jun-Gyu Park; Mia Madel Alfajaro; Yeong-Bin Baek; Eun-Hyo Cho; Joseph Kwon; Jong-Soon Choi; Mun-Il Kang; Sang-Ik Park; Kyoung-Oh Cho

The cellular PI3K/Akt and/or MEK/ERK signaling pathways mediate the entry process or endosomal acidification during infection of many viruses. However, their roles in the early infection events of group A rotaviruses (RVAs) have remained elusive. Here, we show that late-penetration (L-P) human DS-1 and bovine NCDV RVA strains stimulate these signaling pathways very early in the infection. Inhibition of both signaling pathways significantly reduced production of viral progeny due to blockage of virus particles in the late endosome, indicating that neither of the two signaling pathways is involved in virus trafficking. However, immunoprecipitation assays using antibodies specific for pPI3K, pAkt, pERK and the subunit E of the V-ATPase co-immunoprecipitated the V-ATPase in complex with pPI3K, pAkt, and pERK. Moreover, Duolink proximity ligation assay revealed direct association of the subunit E of the V-ATPase with the molecules pPI3K, pAkt, and pERK, indicating that both signaling pathways are involved in V-ATPase-dependent endosomal acidification. Acidic replenishment of the medium restored uncoating of the RVA strains in cells pretreated with inhibitors specific for both signaling pathways, confirming the above results. Isolated components of the outer capsid proteins, expressed as VP4-VP8* and VP4-VP5* domains, and VP7, activated the PI3K/Akt and MEK/ERK pathways. Furthermore, psoralen-UV-inactivated RVA and CsCl-purified RVA triple-layered particles triggered activation of the PI3K/Akt and MEK/ERK pathways, confirming the above results. Our data demonstrate that multistep binding of outer capsid proteins of L-P RVA strains with cell surface receptors phosphorylates PI3K, Akt, and ERK, which in turn directly interact with the subunit E of the V-ATPase to acidify the late endosome for uncoating of RVAs. This study provides a better understanding of the RVA-host interaction during viral uncoating, which is of importance for the development of strategies aiming at controlling or preventing RVA infections.


Journal of Virology | 2017

Activation of COX-2/PGE2 Promotes Sapovirus Replication via the Inhibition of Nitric Oxide Production.

Mia Madel Alfajaro; Jong-Soon Choi; Deok-Song Kim; Ja-Young Seo; Ji-Yun Kim; Jun-Gyu Park; Mahmoud Soliman; Yeong-Bin Baek; Eun-Hyo Cho; Joseph Kwon; Hyung-Jun Kwon; Su-Jin Park; Woo Song Lee; Mun-Il Kang; Myra Hosmillo; Ian Goodfellow; Kyoung-Oh Cho

ABSTRACT Enteric caliciviruses in the genera Norovirus and Sapovirus are important pathogens that cause severe acute gastroenteritis in both humans and animals. Cyclooxygenases (COXs) and their final product, prostaglandin E2 (PGE2), are known to play important roles in the modulation of both the host response to infection and the replicative cycles of several viruses. However, the precise mechanism(s) by which the COX/PGE2 pathway regulates sapovirus replication remains largely unknown. In this study, infection with porcine sapovirus (PSaV) strain Cowden, the only cultivable virus within the genus Sapovirus, markedly increased COX-2 mRNA and protein levels at 24 and 36 h postinfection (hpi), with only a transient increase in COX-1 levels seen at 24 hpi. The treatment of cells with pharmacological inhibitors, such as nonsteroidal anti-inflammatory drugs or small interfering RNAs (siRNAs) against COX-1 and COX-2, significantly reduced PGE2 production, as well as PSaV replication. Expression of the viral proteins VPg and ProPol was associated with activation of the COX/PGE2 pathway. We observed that pharmacological inhibition of COX-2 dramatically increased NO production, causing a reduction in PSaV replication that could be restored by inhibition of nitric oxide synthase via the inhibitor N-nitro-l-methyl-arginine ester. This study identified a pivotal role for the COX/PGE2 pathway in the regulation of NO production during the sapovirus life cycle, providing new insights into the life cycle of this poorly characterized family of viruses. Our findings also reveal potential new targets for treatment of sapovirus infection. IMPORTANCE Sapoviruses are among the major etiological agents of acute gastroenteritis in both humans and animals, but little is known about sapovirus host factor requirements. Here, using only cultivable porcine sapovirus (PSaV) strain Cowden, we demonstrate that PSaV induced the vitalization of the cyclooxygenase (COX) and prostaglandin E2 (PGE2) pathway. Targeting of COX-1/2 using nonsteroidal anti-inflammatory drugs (NSAIDs) such as the COX-1/2 inhibitor indomethacin and the COX-2-specific inhibitors NS-398 and celecoxib or siRNAs targeting COXs, inhibited PSaV replication. Expression of the viral proteins VPg and ProPol was associated with activation of the COX/PGE2 pathway. We further demonstrate that the production of PGE2 provides a protective effect against the antiviral effector mechanism of nitric oxide. Our findings uncover a new mechanism by which PSaV manipulates the host cell to provide an environment suitable for efficient viral growth, which in turn can be a new target for treatment of sapovirus infection.


Journal of Veterinary Medical Science | 2016

Occurrence and molecular characterization of Sapelovirus A in diarrhea and non-diarrhea feces of different age group pigs in one Korean pig farm.

Geon-Yong Bak; Mun-Il Kang; Kyu-Yeol Son; Jun-Gyu Park; Deok-Song Kim; Ja-Young Seo; Ji-Yun Kim; Mia Madel Alfajaro; Mahmoud Soliman; Yeong-Bin Baek; Eun-Hyo Cho; Joseph Kwon; Jong-Soon Choi; Sang-Ik Park; Kyoung-Oh Cho

To determine the occurrence and genetic diversity of Sapelovirus A (SV-A) in diarrhea and non-diarrhea feces of Korean pigs, 110 specimens from different age groups of pigs in the same farm were analyzed by RT-nested PCR. SV-As were detected in 60% of both diarrhea and non-diarrhea specimens regardless of age groups with primer pairs for 2C region, in which all diarrhea samples were co-infected by other enteric pathogens. Phylogenetical analysis of partial VP1 region showed that our strains and several other Korean strains belonged to cluster I, distinct from some strains reported in Korea and other countries. These data indicate that genetically distinct SV-As are frequently detected in Korean pigs irrespective of diarrhea and age.


Veterinary Research | 2018

Porcine sapovirus Cowden strain enters LLC-PK cells via clathrin- and cholesterol-dependent endocytosis with the requirement of dynamin II

Mahmoud Soliman; Deok-Song Kim; Chonsaeng Kim; Ja-Young Seo; Ji-Yun Kim; Jun-Gyu Park; Mia Madel Alfajaro; Yeong-Bin Baek; Eun-Hyo Cho; Sang-Ik Park; Mun-Il Kang; Kyeong-Ok Chang; Ian Goodfellow; Kyoung-Oh Cho

Caliciviruses in the genus Sapovirus are a significant cause of viral gastroenteritis in humans and animals. However, the mechanism of their entry into cells is not well characterized. Here, we determined the entry mechanism of porcine sapovirus (PSaV) strain Cowden into permissive LLC-PK cells. The inhibition of clathrin-mediated endocytosis using chlorpromazine, siRNAs, and a dominant negative (DN) mutant blocked entry and infection of PSaV Cowden strain, confirming a role for clathrin-mediated internalization. Entry and infection were also inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin and was restored by the addition of soluble cholesterol, indicating that cholesterol also contributes to entry and infection of this strain. Furthermore, the inhibition of dynamin GTPase activity by dynasore, siRNA depletion of dynamin II, or overexpression of a DN mutant of dynamin II reduced the entry and infection, suggesting that dynamin mediates the fission and detachment of clathrin- and cholesterol-pits for entry of this strain. In contrast, the inhibition of caveolae-mediated endocytosis using nystatin, siRNAs, or a DN mutant had no inhibitory effect on entry and infection of this strain. It was further determined that cell entry of PSaV Cowden strain required actin rearrangements for vesicle internalization, endosomal trafficking from early to late endosomes through microtubules, and late endosomal acidification for uncoating. We conclude that PSaV strain Cowden is internalized into LLC-PK cells by clathrin- and cholesterol-mediated endocytosis that requires dynamin II and actin rearrangement, and that the uncoating occurs in the acidified late endosomes after trafficking from the early endosomes through microtubules.


Scientific Reports | 2018

Rotavirus-Induced Early Activation of the RhoA/ROCK/MLC Signaling Pathway Mediates the Disruption of Tight Junctions in Polarized MDCK Cells

Mahmoud Soliman; Eun-Hyo Cho; Jun-Gyu Park; Ji-Yun Kim; Mia Madel Alfajaro; Yeong-Bin Baek; Deok-Song Kim; Mun-Il Kang; Sang-Ik Park; Kyoung-Oh Cho

Intestinal epithelial tight junctions (TJ) are a major barrier restricting the entry of various harmful factors including pathogens; however, they also represent an important entry portal for pathogens. Although the rotavirus-induced early disruption of TJ integrity and targeting of TJ proteins as coreceptors are well-defined, the precise molecular mechanisms involved remain unknown. In the present study, infection of polarized MDCK cells with the species A rotavirus (RVA) strains human DS-1 and bovine NCDV induced a redistribution of TJ proteins into the cytoplasm, a reversible decrease in transepithelial resistance, and an increase in paracellular permeability. RhoA/ROCK/MLC signaling was identified as activated at an early stage of infection, while inhibition of this pathway prevented the rotavirus-induced early disruption of TJ integrity and alteration of TJ protein distribution. Activation of pMYPT, PKC, or MLCK, which are known to participate in TJ dissociation, was not observed in MDCK cells infected with either rotavirus strain. Our data demonstrated that binding of RVA virions or cogent VP8* proteins to cellular receptors activates RhoA/ROCK/MLC signaling, which alters TJ protein distribution and disrupts TJ integrity via contraction of the perijunctional actomyosin ring, facilitating virion access to coreceptors and entry into cells.


PLOS ONE | 2018

Feline calicivirus- and murine norovirus-induced COX-2/PGE2 signaling pathway has proviral effects

Mia Madel Alfajaro; Eun-Hyo Cho; Jun-Gyu Park; Ji-Yun Kim; Mahmoud Soliman; Yeong-Bin Baek; Mun-Il Kang; Sang-Ik Park; Kyoung-Oh Cho

Cyclooxygenases (COXs)/prostaglandin E2 (PGE2) signaling pathways are known to modulate a variety of homeostatic processes and are involved in various pathophysiological conditions. COXs/PGE2 signaling pathways have also been demonstrated to have proviral or antiviral effects, which appeared different even in the same virus family. A porcine sapovirus Cowden strain, a member of genus Sapovirus within the Caliciviridae family, induces strong COX-2/PGE2 but transient COX-1/PGE2 signaling to enhance virus replication. However, whether infections of other viruses in the different genera activate COXs/PGE2 signaling, and thus affect the replication of viruses, remains unknown. In the present study, infections of cells with the feline calicivirus (FCV) F9 strain in the genus Vesivirus and murine norovirus (MNV) CW-1 strain in the genus Norovirus only activated the COX-2/PGE2 signaling in a time-dependent manner. Treatment with pharmacological inhibitors or transfection of small interfering RNAs (siRNAs) against COX-2 enzyme significantly reduced the production of PGE2 as well as FCV and MNV replications. The inhibitory effects of these pharmacological inhibitors against COX-2 enzyme on the replication of both viruses were restored by the addition of PGE2. Silencing of COX-1 via siRNAs and inhibition of COX-1 via an inhibitor also decrease the production of PGE2 and replication of both viruses, which can be attributed to the inhibition COX-1/PGE2 signaling pathway. These data indicate that the COX-2/PGE2 signaling pathway has proviral effects for the replication of FCV and MNV, and pharmacological inhibitors against these enzymes serve as potential therapeutic candidates for treating FCV and MNV infections.


Veterinary Microbiology | 2017

Glycan-specificity of four neuraminidase-sensitive animal rotavirus strains

Ji-Yun Kim; Deok-Song Kim; Ja-Young Seo; Jun-Gyu Park; Mia Madel Alfajaro; Mahmoud Soliman; Yeong-Bin Baek; Eun-Hyo Cho; Hyung-Jun Kwon; Su-Jin Park; Mun-Il Kang; Kyoung-Oh Cho

Group A rotaviruses (RVAs) are divided into neuraminidase (NA)-sensitive and NA-insensitive strains depending upon their binding affinity to the VP8* domain in the terminal sialic acids (SAs) of cell surface carbohydrates. Although NA-sensitive strains are known to use terminal SAs as an attachment factor, the exact nature of this attachment factor is largely unknown. Here we show that the specific linkage of SA-containing glycan to glycoprotein or glycolipid is an attachment factor used by NA-sensitive porcine G9P[7] PRG9121 and G9P[23] PRG942, bovine G6P[1] NCDV, and canine G3P[3] strains. Infectivity of porcine G9P[7] and G9P[23] strains was markedly blocked by α2,3-linkage and α2,6-linkage inhibitors, indicating that these strains bind to both α2,3- and α2,6-linked SAs. However, the infectivity of bovine G6P[1] and canine G3P[3] strains was significantly reduced by α2,6-linkage inhibitor but not by α2,3-linkage blockers, demonstrating a predilection of these strains for α2,6-linked SAs. The infectivity of four NA-sensitive strains was equally reduced by inhibitors of lipid membrane and N-linked glycoprotein but not by an inhibitor of O-linked glycoprotein, indicating that these strains utilize both glycolipid and N-linked glycoprotein. Our study demonstrates that four NA-sensitive animal strains could have a strain-dependent binding preference toward α2,6-linked SAs (P[1] NCDV and P[3] CU-1 strains) or both α2,3- and α2,6-linked SAs (P[7] PRG9121 and P[23] PRG942 strains) to the glycolipid and N-linked glycoprotein.

Collaboration


Dive into the Yeong-Bin Baek's collaboration.

Top Co-Authors

Avatar

Ji-Yun Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Jun-Gyu Park

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Mahmoud Soliman

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Mia Madel Alfajaro

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Mun-Il Kang

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Eun-Hyo Cho

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Kyoung-Oh Cho

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Deok-Song Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Ja-Young Seo

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Sang-Ik Park

Chonnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge