Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where YeonKyeong Lee is active.

Publication


Featured researches published by YeonKyeong Lee.


Plant Journal | 2008

Sequential cell wall transformations in response to the induction of a pedicel abscission event in Euphorbia pulcherrima (poinsettia).

YeonKyeong Lee; Paul Derbyshire; J. Paul Knox; Anne Kathrine Hvoslef-Eide

Alterations in the detection of cell wall polysaccharides during an induced abscission event in the pedicel of Euphorbia pulcherrima (poinsettia) have been determined using monoclonal antibodies and Fourier transform infrared (FT-IR) microspectroscopy. Concurrent with the appearance of a morphologically distinct abscission zone (AZ) on day 5 after induction, a reduction in the detection of the LM5 (1-->4)-beta-D-galactan and LM6 (1-->5)-alpha-L-arabinan epitopes in AZ cell walls was observed. Prior to AZ activation, a loss of the (1-->4)-beta-D-galactan and (1-->5)-alpha-L-arabinan epitopes was detected in cell walls distal to the AZ, i.e. in the to-be-shed organ. The earliest detected change, on day 2 after induction, was a specific loss of the LM5 (1-->4)-beta-D-galactan epitope from epidermal cells distal to the region where the AZ would form. Such alteration in the cell walls was an early, pre-AZ activation event. An AZ-associated de-esterification of homogalacturonan (HG) was detected in the AZ and distal area on day 7 after induction. The FT-IR analysis indicated that lignin and xylan were abundant in the AZ and that lower levels of cellulose, arabinose and pectin were present. Xylan and xyloglucan epitopes were detected in the cell walls of both the AZ and also the primary cell walls of the distal region at a late stage of the abscission process, on day 7 after induction. These observations indicate that the induction of an abscission event results in a temporal sequence of cell wall modifications involving the spatially regulated loss, appearance and/or remodelling of distinct sets of cell wall polymers.


Frontiers in Plant Science | 2014

Invasion of shoot apical meristems by Chrysanthemum stunt viroid differs among Argyranthemum cultivars

Zhibo Zhang; YeonKyeong Lee; Carl Spetz; Jihong Liu Clarke; Qiaochun Wang; Dag-Ragnar Blystad

Chrysanthemum stunt viroid (CSVd) is a damaging pathogen attacking Argyranthemum plants. Our study attempted to reveal distribution patterns of CSVd in shoot apical meristems (SAM) and to explore reasons for differential ability of CSVd to invade SAM of selected Argyranthemum cultivars. Symptom development was also observed on greenhouse-grown Argyranthemum plants. Viroid localization using in situ hybridization revealed that the ability of CSVd to invade SAM differed among cultivars. In diseased ‘Yellow Empire’ and ‘Butterfly’, CSVd was found in all tissues including the uppermost cell layers in the apical dome (AD) and the youngest leaf primordia 1 and 2. In diseased ‘Border Dark Red’ and ‘Border Pink’, CSVd was detected in the lower part of the AD and elder leaf primordia, leaving the upper part of the AD, and leaf primordia 1 and 2 free of viroid. Histological observations and transmission electron microscopy showed similar developmental patterns of vascular tissues and plasmodesmata (PD) in the SAM of ‘Yellow Empire’ and ‘Border Dark Red’, while immunolocalization studies revealed a major difference in the number of callose (β-1, 3-glucan) particles deposited at PD in SAM. A lower number of callose particles were found deposited at PD of SAM of ‘Yellow Empire’ than ‘Border Dark Red’. This difference is most likely responsible for the differences in ability of CSVd to invade SAM among Argyranthemum cultivars.


Frontiers in Plant Science | 2014

Effect of alternating day and night temperature on short day-induced bud set and subsequent bud burst in long days in Norway spruce

Jorunn E. Olsen; YeonKyeong Lee; Olavi Junttila

Young seedlings of the conifer Norway spruce exhibit short day (SD)-induced cessation of apical growth and bud set. Although different, constant temperatures under SD are known to modulate timing of bud set and depth of dormancy with development of deeper dormancy under higher compared to lower temperature, systematic studies of effects of alternating day (DT) and night temperatures (NT) are limited. To shed light on this, seedlings of different provenances of Norway spruce were exposed to a wide range of DT-NT combinations during bud development, followed by transfer to forcing conditions of long days (LD) and 18°C, directly or after different periods of chilling. Although no specific effect of alternating DT/NT was found, the results demonstrate that the effects of DT under SD on bud set and subsequent bud break are significantly modified by NT in a complex way. The effects on bud break persisted after chilling. Since time to bud set correlated with the daily mean temperature under SD at DTs of 18 and 21°C, but not a DT of 15°C, time to bud set apparently also depend on the specific DT, implying that the effect of NT depends on the actual DT. Although higher temperature under SD generally results in later bud break after transfer to forcing conditions, the fastest bud flush was observed at intermediate NTs. This might be due to a bud break-hastening chilling effect of intermediate compared to higher temperatures, and delayed bud development to a stage where bud burst can occur, under lower temperatures. Also, time to bud burst in un-chilled seedlings decreased with increasing SD-duration, suggesting that bud development must reach a certain stage before the processes leading to bud burst are initiated. The present results also indicate that low temperature during bud development had a larger effect on the most southern compared to the most northern provenance studied. Decreasing time to bud burst was observed with increasing northern latitude of origin in un-chilled as well as chilled plants. In conclusion, being a highly temperature-dependent process, bud development is strongly delayed by low temperature, and the effects of DT is significantly modified by NT in a complex manner.


BMC Plant Biology | 2009

Characterization and structural analysis of wild type and a non-abscission mutant at the development funiculus (Def) locus in Pisum sativum L

Kwadwo Owusu Ayeh; YeonKyeong Lee; Mike Ambrose; Anne Kathrine Hvoslef-Eide

BackgroundIn pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized.ResultsA clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells.ConclusionThe Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle.


BMC Research Notes | 2011

Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L

Kwadwo Owusu Ayeh; YeonKyeong Lee; Mike Ambrose; Anne Kathrine Hvoslef-Eide

BackgroundThe def mutant pea (Pisum sativum L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations.FindingsPod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearsons chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants.ConclusionsThis study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (Def) controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat.


Frontiers in Plant Science | 2016

Primary and Secondary Abscission in Pisum sativum and Euphorbia pulcherrima—How Do They Compare and How Do They Differ?

Anne Kathrine Hvoslef-Eide; Cristel Munster; Cecilie Mathiesen; Kwadwo Owusu Ayeh; Tone Ingeborg Melby; Paoly Rasolomanana; YeonKyeong Lee

Abscission is a highly regulated and coordinated developmental process in plants. It is important to understand the processes leading up to the event, in order to better control abscission in crop plants. This has the potential to reduce yield losses in the field and increase the ornamental value of flowers and potted plants. A reliable method of abscission induction in poinsettia (Euphorbia pulcherrima) flowers has been established to study the process in a comprehensive manner. By correctly decapitating buds of the third order, abscission can be induced in 1 week. AFLP differential display (DD) was used to search for genes regulating abscission. Through validation using qRT-PCR, more information of the genes involved during induced secondary abscission have been obtained. A study using two pea (Pisum sativum) mutants in the def (Developmental funiculus) gene, which was compared with wild type peas (tall and dwarf in both cases) was performed. The def mutant results in a deformed, abscission-less zone instead of normal primary abscission at the funiculus. RNA in situ hybridization studies using gene sequences from the poinsettia differential display, resulted in six genes differentially expressed for abscission specific genes in both poinsettia and pea. Two of these genes are associated with gene up- or down-regulation during the first 2 days after decapitation in poinsettia. Present and previous results in poinsettia (biochemically and gene expressions), enables a more detailed division of the secondary abscission phases in poinsettia than what has previously been described from primary abscission in Arabidopsis. This study compares the inducible secondary abscission in poinsettia and the non-abscising mutants/wild types in pea demonstrating primary abscission zones. The results may have wide implications on the understanding of abscission, since pea and poinsettia have been separated for 94–98 million years in evolution, hence any genes or processes in common are bound to be widespread in the plant kingdom.


Frontiers in Microbiology | 2016

Low Temperature Treatment Affects Concentration and Distribution of Chrysanthemum Stunt Viroid in Argyranthemum

Zhibo Zhang; YeonKyeong Lee; Astrid Sivertsen; Gry Skjeseth; Sissel Haugslien; Jihong Liu Clarke; Qiao-Chun Wang; Dag-Ragnar Blystad

Chrysanthemum stunt viroid (CSVd) can infect Argyranthemum and cause serious economic loss. Low temperature treatment combined with meristem culture has been applied to eradicate viroids from their hosts, but without success in eliminating CSVd from diseased Argyranthemum. The objectives of this work were to investigate (1) the effect of low temperature treatment combined with meristem culture on elimination of CSVd, (2) the effect of low temperature treatment on CSVd distribution pattern in shoot apical meristem (SAM), and (3) CSVd distribution in flowers and stems of two infected Argyranthemum cultivars. After treatment with low temperature combined with meristem tip culture, two CSVd-free plants were found in ‘Border Dark Red’, but none in ‘Yellow Empire’. With the help of in situ hybridization, we found that CSVd distribution patterns in the SAM showed no changes in diseased ‘Yellow Empire’ following 5°C treatment, compared with non-treated plants. However, the CSVd-free area in SAM was enlarged in diseased ‘Border Dark Red’ following prolonged 5°C treatment. Localization of CSVd in the flowers and stems of infected ‘Border Dark Red’ and ‘Yellow Empire’ indicated that seeds could not transmit CSVd in these two cultivars, and CSVd existed in phloem. Results obtained in the study contributed to better understanding of the distribution of CSVd in systemically infected plants and the combination of low temperature treatment and meristem tip culture for production of viroid-free plants.


BMC Proceedings | 2011

Molecular dissection of an adaptive epigenetic memory mechanism in norway spruce

Igor Yakovlev; YeonKyeong Lee; Björn Rotter; Tore Skrøppa; Jorunn E. Olsen; Øystein Johnsen; Carl Gunnar Fossdal

In Norway spruce, environmental conditions during the reproduction can greatly influence progeny performance. We found that the temperature during post meiotic megagametogenesis (zygotic embryogenesis) and seed maturation shift the growth cycle program of the embryos in the seeds, resulting in significant and long lasting phenotypic changes in the progeny. Traits that are affected include the timing of dehardening and bud burst in the spring; leader shoot growth cessation in the summer, and bud set and cold acclimation in the autumn. All processes are advanced or delayed in correspondence with the temperature during female reproduction. Colder reproductive environment advance bud set and cold acclimation during autumn and dehardening and bud burst during spring in their progenies. Temperature dependent difference in timing of terminal bud formation in identical clones was equivalent to a 4–6° latitudinal ecotypic difference. The progeny “remember” the temperatures and photoperiod prevailing during zygotic embryogenesis and seed maturation and this memory, affecting the climatic adaptation in this species, is an epigenetic phenomenon. This phenomenon is not only of evolutionary significance but has clear practical implications. This memory can help the conifer to cope with the anticipated rapid change in climatic conditions. It will have importance for the deployment of seedlings produced in seed orchards containing clones that are translocated to warmer sites, and it may be used to produce seedlings that have specific adaptive properties. So, it is possible to produce distinct phenotypes (epitypes) in Norway spruce, however this type of long lasting effects is not well documented in other organisms so far. The molecular mechanism behind this striking epigenetic memory phenomenon is not yet unraveled but transcriptional changes are clearly involved. In epigenetically different progenies, transcriptional analysis revealed that seedlings from full-sib families produced at different embryogenesis temperature under long and short day conditions differed. Suppressive subtracted cDNA libraries revealed significant differences in their transcriptomes. Using qRT-PCR, microRNA pathways genes PaDCL1 and 2 and PaSGS3 as well as transposons related genes are differential expressed in the epigenetically different progenies with phenotypic differences in bud burst and bud set. MicroRNAs (miRNAs) are endogenous small RNAs that can exert epigenetic gene regulatory impacts. We have examined the possible role of miRNA in the epigenetic phenomena, and found that Norway spruce contains a set of conserved miRNAs as well as a large proportion of novel non-conserved miRNAs. From concatemerized small RNA libraries from seedlings from the same parents, originated from seeds developed in a cold and warm environment from a family with distinct epigenetic effects, contrasted to one from a family with little response, miRNAs potentially involved in this epigenetic memory was identified. Most of the miRNAs target unknown genes or genes with no known function. The expression of seven conserved and nine novel miRNAs showed significant differences in transcript levels in progenies with distinct epigenetic difference in bud set, but not in the progenies from a non-responding family, making them excellent candidate miRNAs. The differentially expression of specific miRNAs in genetically identical but epigenetically different progeny indicate their putative participation in the epigenetic regulation. Epigenetic mechanisms influence phenotype through altered regulation of gene expression that is mitotically (and sometimes meiotically) propagated. Understanding the mechanisms involved in the initiation, maintenance, and heritability of epigenetic states is an exiting aspect of research in current biology. Epigenetic regulation may be realized through several interconnected molecular pathways including DNA methylation, histone modification and chromatin remodeling, small non-coding RNAs and transposable element regulation. Among spruce ESTs we found 64 homologs of genes described as involved in DNA methylation, histone modification and chromatin remodeling and small RNA biogenesis in other plant species. In general, known epigenetic mechanism related genes are very well represented in the spruce genome. We analyzed the transcription patterns of these genes using RT-PCR in epigenetically different zygotic embryogenic samples on different stages of development and in seedlings, originated from full-sib families clearly differed in epigenetic response. The largest difference in gene expression of selected genes was found at the earlier stages of embryogenesis while in seedlings a low number of these genes were differentially expressed. Most of the known epigenetic mechanism related genes in seedlings were steadily expressed in all studied samples independently of their epitype. To get a deeper analysis of epigenetic related transcriptome we used high-throughput sequencing (RNA-seq and miRNA-seq) in cooperation with GenXPro GmbH. Using MACE (massive cDNA 3’end sequencing) deep mRNA sequencing on the Illumina GSII platform, we analyzed the genes differentially expressed in P. abies during early stages of embryonic development. We selected genes which could be involved into epigenetic response by comparison warm and cold originated “embryonic epitypes” from the same full-sibs family somatic embryos developed in cold (18°C) and warm (30°C) environmental conditions. Additionally, for more distinct analysing of the large amount of “no database hit” reads we sequenced one normalised library using 454 Titanium GS FLX sequencing to get reference transcript set of expressed genes. The sequencing data is currently under processing and we are going to discuss main results here. To proceed with our initial study of miRNAs in spruce, we used Illumina/SOLEXA sequencing to identify small RNAs expressed at the same epigenetic responsive family developed in warm and cold environment progenies following short-day treatment. The identification of novel miRNA candidates are in progress and the confirmation of conserved and novel miRNA by qRT-PCR analysis will be presented.


Frontiers in Plant Science | 2017

Photoperiodic Regulation of Growth-Dormancy Cycling through Induction of Multiple Bud–Shoot Barriers Preventing Water Transport into the Winter Buds of Norway Spruce

YeonKyeong Lee; Chithra Karunakaran; Rachid Lahlali; Xia Liu; Karen K. Tanino; Jorunn E. Olsen

Whereas long days (LDs) sustain shoot elongation, short days (SDs) induce growth cessation and formation of dormant buds in young individuals of a wide range of temperate and boreal tree species. In specific conifers, including Norway spruce, photoperiodic control of bud development is associated with the formation of a plate of thick-walled cells, denoted as the crown, at the base of the bud. Information about cellular characteristics of this crown region is limited. We aimed to test whether the crown region is an important SD-induced barrier ensuring dehydration of the developing winter bud by preventing water influx. Using microscopy and synchrotron techniques, we show here that under LD, cell walls in growing shoot tips had highly methyl-esterified homogalacturonan pectin. During SD-induced bud development, the homogalacturonan in the crown region was de-methyl-esterified, enabling Ca2+ binding and crosslinking, a process known to decrease cell wall water permeability by reducing pectin pore size. In addition, there was abundant callose deposition at plasmodesmata in the crown region, and xylem connections between the bud and the subtending shoot were blocked. Consistent with reduced water transport across the crown region into the bud, uptake of fluorescein in shoot tips was blocked at the base of the bud under SD. Upon transfer from SD to bud-break-inducing LD, these processes were reversed, and aquaporin transcript levels significantly increased in young stem tissue after 4 weeks under LD. These findings indicate that terminal bud development is associated with reduced water transport through decreased cell wall permeability and blocking of plasmodesmata and xylem connections in the crown structure. This provides further understanding of the regulatory mechanism for growth-dormancy cycling in coniferous tree species such as Norway spruce.


Plant and Cell Physiology | 2016

Thermoperiodic Control of Floral Induction Involves Modulation of the Diurnal FLOWERING LOCUS T Expression Pattern

Micael Wendell; Linda Ripel; YeonKyeong Lee; Odd Arne Rognli; Sissel Torre; Jorunn E. Olsen

Thermoperiodism is defined as the ability to discriminate between day temperature (DT) and night temperature (NT). Our aim was to shed light on the mechanistic basis of thermoperiodic floral induction with acceleration under lower DT than NT compared with other DT-NT combinations at the same average daily temperature (ADT), a response exploited in temperate area greenhouses. Arabidopsis thaliana floral pathway mutants and a lhy circadian clock mutant as well as the expression of floral integrators and LHY (LATE ELONGATED HYPOCOTYL) were studied under different DT-NT combinations, all at the same ADT. We show that acceleration of floral induction under lower DT than NT is linked to increased FT expression early during the day and generally increased LFY expression preceding visible flower buds, compared with higher DT than NT or equal DT and NT. Consistent with FLOWERING LOCUS T (FT) action through LEAFY (LFY), time to floral transition in ft-1 and lfy-1 was similar under all treatments, in contrast to the situation for soc1-1, which behaved like the wild type (WT). The lhy-21 mutants did not discriminate between opposite DT-NT combinations, whereas LHY expression in the WT differed in these temperature regimes. This might suggest that LHY plays a role in thermoperiodic control of floral induction. We conclude that thermoperiodic control of floral transition is associated with modulation of the diurnal expression patterns of FT, with timing of temperature alteration being important rather than ADT.

Collaboration


Dive into the YeonKyeong Lee's collaboration.

Top Co-Authors

Avatar

Jorunn E. Olsen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Anne Kathrine Hvoslef-Eide

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl Gunnar Fossdal

Norwegian Forest and Landscape Institute

View shared research outputs
Top Co-Authors

Avatar

Igor Yakovlev

Norwegian Forest and Landscape Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwadwo Owusu Ayeh

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Sissel Torre

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Tore Skrøppa

Norwegian Forest and Landscape Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge