Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeqing Mao is active.

Publication


Featured researches published by Yeqing Mao.


FEBS Letters | 2012

Cyclin-dependent kinase 4 is a novel target in micoRNA-195-mediated cell cycle arrest in bladder cancer cells

Yiwei Lin; Jian Wu; Hong Chen; Yeqing Mao; Yunfu Liu; Qiqi Mao; Kai Yang; Xiangyi Zheng; Liping Xie

miRNAs are a class of small‐noncoding RNAs capable of negatively regulating gene expression. Here, we found that miR‐195 is down‐regulated in human bladder cancer tissue versus normal adjacent tissue. To better characterize the role of miR‐195 in bladder cancer, we conducted gain of function analysis by transfecting bladder cancer cell line T24 with chemically synthesized miR‐195 mimic. We identified CDK4, an early G1 cell cycle regulator, as a novel target of miR‐195. Selective over‐expression of miR‐195 could induce G1‐phase arrest in T24 cells, and subsequently inhibit T24 cell growth. These findings indicate that miR‐195 could be a potential tumor suppressor in bladder cancer.


Journal of Translational Medicine | 2013

MicroRNA-124-3p inhibits cell migration and invasion in bladder cancer cells by targeting ROCK1

Xianglai Xu; Shiqi Li; Yiwei Lin; Hong Chen; Zhenghui Hu; Yeqing Mao; Xin Xu; Jian Wu; Yi Zhu; Xiangyi Zheng; Jindan Luo; Liping Xie

BackgroundIncreasing evidence has suggested that dysregulation of certain microRNAs (miRNAs) may contribute to human disease including carcinogenesis and tumor metastasis in human. miR-124-3p is down-regulated in various cancers, and modulates proliferation and aggressiveness of cancer cells. However, the roles of miR-124-3p in human bladder cancer are elusive. Thus, this study was conducted to investigate the biological functions and its molecular mechanisms of miR-124-3p in human bladder cancer cell lines, discussing whether it has a potential to be a therapeutic biomarker of bladder cancer.MethodsThree human bladder cancer cell lines and samples from ten patients with bladder cancer were analyzed for the expression of miR-124-3p by quantitative RT--PCR. Exogenetic overexpression of miR-124-3p was established by transfecting mimics into T24, UM-UC-3 and J82 cells, after that cell proliferation and cell cycle were assessed by MTT assay, flow cytometry and Colony-forming assay. Cell motility and invasion ability were evaluated by wound healing assay and transwell assay. Tissue microarray, and immunohistochemistry with antibodies against ROCK1, MMP2 and MMP9 was performed using the peroxidase and DAB methods. The target gene of miR-124-3p was determined by luciferase assays, quantitative RT--PCR and western blot. The regulation of epithelial-to-mesenchymal transition by miR-124-3p was analyzed by western blot.ResultsmiR-124-3p is frequently down-regulated in bladder cancer both in three bladder cancer cell lines, T24, UM-UC-3, J82 and clinical samples. Overexpression of miR-124-3p induced G1-phase arrest in T24, UM-UC-3 and J82 cell lines and suppressed cell growth in colony-forming assay. miR-124-3p significantly repressed the capability of migration and invasion of bladder cancer cells. In addition, ROCK1 was identified as a new target of miR-124-3p. ROCK1, MMP2, MMP9 were up-regulated in bladder cancer tissues. Furthermore, we demonstrated miR-124-3p could inhibit bladder cancer cell epithelial mesenchymal transfer, and regulated the expression of c-Met, MMP2, MMP9.ConclusionsmiR-124-3p can repress the migration and invasion of bladder cancer cells via regulating ROCK1. Our data indicate that miR-124-3p could be a tumor suppressor and may have a potential to be a diagnostics or predictive biomarker in bladder cancer.


Cancer Letters | 2012

MicroRNA-449a acts as a tumor suppressor in human bladder cancer through the regulation of pocket proteins

Hong Chen; Yiwei Lin; Yeqing Mao; Jian Wu; Yunfu Liu; Xiangyi Zheng; Liping Xie

Frequent downregulation of microRNA-449a (miR-449a) was detected in 14 human bladder cancer tissues. The restoration of miR-449a inhibited cell growth and induced G1-phase arrest in T24 and 5637 human bladder cancer cells. CDK6 and CDC25a were downregulated after miR-449a treatment, resulting in the functional accumulation of the pocket proteins Rb and p130. The growth of T24 tumor xenografts was suppressed by exogenous miR-449a, and the nuclear proliferation antigen Ki-67 was downregulated in miR-449a-treated tumors. These results suggest a tumor-suppressive role for miR-449a in human bladder cancer.


Molecules and Cells | 2013

MicroRNA-409-3p Inhibits Migration and Invasion of Bladder Cancer Cells via Targeting c-Met

Xin Xu; Hong Chen; Yiwei Lin; Zhenghui Hu; Yeqing Mao; Jian Wu; Xianglai Xu; Yi Zhu; Shiqi Li; Xiangyi Zheng; Liping Xie

There is increasing evidence suggesting that dysregulation of certain microRNAs (miRNAs) may contribute to tumor progression and metastasis. Previous studies have shown that miR-409-3p is dysregulated in some malignancies, but its role in bladder cancer is still unknown. Here, we find that miR-409-3p is down-regulated in human bladder cancer tissues and cell lines. Enforced expression of miR-409-3p in bladder cancer cells significantly reduced their migration and invasion without affecting cell viability. Bioinformatics analysis identified the pro-metastatic gene c-Met as a potential miR-409-3p target. Further studies indicated that miR-409-3p suppressed the expression of c-Met by binding to its 3′-untranslated region. Silencing of c-Met by small interfering RNAs phenocopied the effects of miR-409-3p overexpression, whereas restoration of c-Met in bladder cancer cells bladder cancer cells overexpressing miR-409-3p, partially reversed the suppressive effects of miR-409-3p. We further showed that MMP2 and MMP9 may be downstream effector proteins of miR-409-3p. These findings indicate that miR-409-3p could be a potential tumor suppressor in bladder cancer.


Biochemical and Biophysical Research Communications | 2013

MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos.

Shiqi Li; Xianglai Xu; Xin Xu; Zhenghui Hu; Jian Wu; Yi Zhu; Hong Chen; Yeqing Mao; Yiwei Lin; Jindan Luo; Xiangyi Zheng; Liping Xie

MicroRNAs (miRNAs) are non-protein-coding sequences that play a crucial role in tumorigenesis by negatively regulating gene expression. Here, we found that miR-490-5p is down-regulated in human bladder cancer tissue and cell lines compared to normal adjacent tissue and a non-malignant cell line. To better characterize the function of miR-490-5p in bladder cancer, we over-expressed miR-490-5p in bladder cancer cell lines with chemically synthesized mimics. Enforced expression of miR-490-5p in bladder cancer cells significantly inhibited the cell proliferation via G1-phase arrest. Further studies found the decreased c-Fos expression at both mRNA and protein levels and Luciferase reporter assays demonstrated that c-Fos is a direct target of miR-490-5p in bladder cancer. These findings indicate miR-490-5p to be a novel tumor suppressor of bladder cancer cell proliferation through targeting c-Fos.


FEBS Letters | 2013

miR-26a inhibits proliferation and motility in bladder cancer by targeting HMGA1.

Yiwei Lin; Hong Chen; Zhenghui Hu; Yeqing Mao; Xianglai Xu; Yi Zhu; Xin Xu; Jian Wu; Shiqi Li; Qiqi Mao; Xiangyi Zheng; Liping Xie

It is increasingly clear that microRNAs play a crucial role in tumorigenesis. Recently, emerging evidence suggested that miR‐26a is aberrantly expressed in tumor tissues. In our study, frequent down‐regulation of miR‐26a was observed in 10 human bladder cancer tissues. Forced expression of miR‐26a in the bladder cancer cell line T24 inhibited cell proliferation and impaired cell motility. High mobility group AT‐hook 1 (HMGA1), a gene that modulates cell cycle transition and cell motility, was verified as a novel target of miR‐26a in bladder cancer. These findings indicate an important role for miR‐26a in the molecular etiology of bladder cancer and implicate the potential application of miR‐26a in bladder cancer therapy.


Molecular Cancer | 2014

Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3a signaling pathway

Xin Xu; Jian Wu; Shiqi Li; Zhenghui Hu; Xianglai Xu; Yi Zhu; Zhen Liang; Xiao Wang; Yiwei Lin; Yeqing Mao; Hong Chen; Jindan Luo; Ben Liu; Xiangyi Zheng; Liping Xie

BackgroundEmerging evidence has suggested that dysregulation of miR-182-5p may contribute to tumor development and progression in several types of human cancers. However, its role in renal cell carcinoma (RCC) is still unknown.MethodsQuantitative RT-PCR was used to quantify miR-182-5p expression in RCC clinical tissues. Bisulfite sequencing PCR was used for DNA methylation analysis. The CCK-8, colony formation, flow cytometry, and a xenograft model were performed. Immunohistochemistry was conducted using the peroxidase and DAB methods. A miR-182-5p target was determined by luciferase reporter assays, quantitative RT-PCR, and Western blotting.ResultsmiR-182-5p is frequently down-regulated in human RCC tissues. Epigenetic modulation may be involved in the regulation of miR-182-5p expression. Enforced expression of miR-182-5p in RCC cells significantly inhibited the proliferation and tumorigenicity in vitro and in vivo. Additionally, overexpression of miR-182-5p induced G1-phase arrest via inhibition of AKT/FOXO3a signaling. Moreover, FLOT1 was confirmed as a target of miR-182-5p. Silencing FLOT1 by small interfering RNAs phenocopied the effects of miR-182-5p overexpression, whereas restoration of FLOT1 in miR-182-5p -overexpressed RCC cells partly reversed the suppressive effects of miR-182-5p.ConclusionsThese findings highlight an important role for miR-182-5p in the pathogenesis of RCC, and restoration of miR-182-5p could be considered as a potential therapeutic strategy for RCC therapy.


Oncology Reports | 2013

microRNA-330 inhibits cell motility by downregulating Sp1 in prostate cancer cells.

Yeqing Mao; Hong Chen; Yiwei Lin; Xin Xu; Zhenghui Hu; Yi Zhu; Jian Wu; Xianglai Xu; Xiangyi Zheng; Liping Xie

microRNAs (miRNAs), small non-coding RNAs, have emerged as key regulators of a large number of genes. The present study aimed to explore novel biological functions of miR-330 in the human prostate cancer cell lines DU145 and PC3. We confirmed that miR-330 was downregulated and inversely correlated with specificity protein 1 (Sp1) expression. Overexpression of miR-330 by transfection of a chemically synthesized miR-330 mimic induced a reduction in expression levels of the Sp1 protein, accompanied by significant suppression of cellular migration and invasion capability. In addition, the Sp1-knockdown experiments presented similar phenomena. Finally, the luciferase reporter assay validated Sp1 as the direct target of miR-330. These findings indicate that miR-330 acts as an anti-metastatic miRNA in prostate cancer.


Cancer Cell International | 2013

Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells.

Yi Zhu; Yeqing Mao; Hong Chen; Yiwei Lin; Zhenghui Hu; Jian Wu; Xin Xu; Xianglai Xu; Jie Qin; Liping Xie

BackgroundApigenin (4’,5,7-trihydroxyflavone) was recently shown effective in inhibiting several cancers. The aim of this study was to investigate the effect and mechanism of apigenin in the human bladder cancer cell line T24 for the first time.MethodsT24 cells were treated with varying concentrations and time of apigenin. Cell viability was evaluated by MTT assay. Cell motility and invasiveness were assayed by Matrigel migration and invasion assay. Flow cytometry and western blot analysis were used to detect cell apoptosis, cell cycle and signaling pathway.ResultsThe results demonstrated that apigenin suppressed proliferation and inhibited the migration and invasion potential of T24 bladder cancer cells in a dose- and time-dependent manner, which was associated with induced G2/M Phase cell cycle arrest and apoptosis. The mechanism of action is like to involve PI3K/Akt pathway and Bcl-2 family proteins. Apigenin increased caspase-3 activity and PARP cleavage, indicating that apigenin induced apoptosis in a caspase-dependent way.ConclusionsThese findings suggest that apigenin may be an effective way for treating human bladder cancer.


Cancer Cell International | 2015

MiR-124 suppresses cell motility and adhesion by targeting talin 1 in prostate cancer cells

Wei Zhang; Yeqing Mao; Hua Wang; Wen-juan Yin; Shao-xing Zhu; Wei-cheng Wang

BackgroundMicroRNA is a type of endogenous non-coding RNA implicated in various cellular processes, and has been intensely investigated in the field of cancer research for many years. Here, we investigated the functions and mechanisms of miR-124 in prostate cancer, which is a putative tumor suppressor reported in many carcinomas.MethodsUsing bioinformatics, talin 1 was indicated as a potential target of miR-124. We examined the expression levels of miR-124 and talin 1 in tissue specimens and cell lines. To explore the relationship between miR-124 and talin 1, miR-124 mimics, miR-124 inhibitors, and talin 1 small interfering RNA (siRNA) were transiently transfected into cancer cell lines, followed by analysis using luciferase reporter assays. Next, to investigate the functions of miR-124 in prostate cancer, we performed cell attachment, migration, and invasion assays. A rescue experiment was also conducted to demonstrate whether miR-124 suppressed cell adhesion and motility by targeting talin 1. Finally, we examined the related signaling pathways of miR-124 and talin 1.ResultsMiR-124 was down-regulated in prostate cancer specimens and cell lines, while talin 1 was over-expressed in prostate cancer specimens and cell lines. These results showed an inverse correlation of miR-124 and talin 1 expression. Similar to talin 1 siRNA, overexpression of miR-124 by transient transfection of mimics led to a significant decrease in talin 1 levels. Luciferase report assays showed that the seed sequence of the talin 1 3’-untranslated region was a target of miR-124. Functional investigations revealed anti-attachment, anti-migration, and invasion-promoting effects of miR-124 in prostate cancer cells. The rescue experiment confirmed that miR-124 exerted its biological functions by targeting talin 1. Finally, we found that miR-124 and talin 1 impaired cellular adhesion and motility through integrins and the focal adhesion kinase/Akt pathway.ConclusionsOur study demonstrated biological roles and the related mechanism of miR-124 in prostate cancer. The results indicate that talin 1 is very likely a novel player in the anti-metastatic signaling network of miR-124. By down-regulation of talin 1, miR-124 impairs the adhesion, migration, and invasion of prostate cancer cells.

Collaboration


Dive into the Yeqing Mao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Xu

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Zhu

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge