Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeriel Estrada is active.

Publication


Featured researches published by Yeriel Estrada.


Cancer Cell | 2002

EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma

David Liu; Julio A. Aguirre Ghiso; Yeriel Estrada; Liliana Ossowski

Urokinase plasminogen activator receptor (uPAR) activates alpha5beta1 integrin and ERK signaling, inducing in vivo proliferation of HEp3 human carcinoma. Here we demonstrate that EGFR mediates the uPAR/integrin/fibronectin (FN) induced growth pathway. Its activation is ligand-independent and does not require high EGFR, but does require high uPAR expression. Only when uPAR level is constitutively elevated does EGFR become alpha5beta1-associated and activated. Domain 1 of uPAR is crucial for EGFR activation, and FAK links integrin and EGFR signaling. Inhibition of EGFR kinase blocks uPAR induced signal to ERK, implicating EGFR as an important effector of the pathway. Disruption of uPAR or EGFR signaling reduces HEp3 proliferation in vivo. These findings unveil a mechanism whereby uPAR subverts ligand-regulated EGFR signaling, providing cancer cells with proliferative advantage.


The Journal of Allergy and Clinical Immunology | 2015

The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization

Shinji Noda; Mayte Suárez-Fariñas; Benjamin Ungar; Soo Jung Kim; Cristina de Guzman Strong; Hui Xu; Xiangyu Peng; Yeriel Estrada; Saeko Nakajima; Tetsuya Honda; Jung U Shin; Hemin Lee; James G. Krueger; Kwang Hoon Lee; Kenji Kabashima; Emma Guttman-Yassky

BACKGROUND Atopic dermatitis (AD) shows very high prevalence in Asia, with a large unmet need for effective therapeutics. Direct comparisons between European American (EA) and Asian patients with AD are unavailable, but earlier blood studies detected increased IL-17(+)-producing cell counts in Asian patients with AD. OBJECTIVE We sought to characterize the Asian AD skin phenotype and compare it with the EA AD skin phenotype. METHODS We performed genomic profiling (real-time PCR) and immunohistochemistry on lesional and nonlesional biopsy specimens from 52 patients with AD (25 EAs and 27 Asians), 10 patients with psoriasis (all EAs), and 27 healthy subjects (12 EAs and 15 Asians). RESULTS Although disease severity/SCORAD scores were similar between the AD groups (58.0 vs 56.7, P = .77), greater acanthosis, higher Ki67 counts, and frequent parakeratosis were characteristics of lesional epidermis from Asian patients with AD (P < .05). Most (24/27) Asian patients had high IgE levels. A principal component analysis using real-time PCR data clustered the Asian AD phenotype between the EA AD and psoriasis phenotypes. TH2 skewing characterized both Asian and EA patients with AD but not patients with psoriasis. Significantly higher TH17 and TH22 (IL17A, IL19, and S100A12 in lesional and IL-22 in nonlesional skin; P < .05) and lower TH1/interferon (CXCL9, CXCL10, MX1, and IFNG in nonlesional skin; P < .05) gene induction typified AD skin in Asian patients. CONCLUSION The Asian AD phenotype presents (even in the presence of increased IgE levels) a blended phenotype between that of EA patients with AD and those with psoriasis, including increased hyperplasia, parakeratosis, higher TH17 activation, and a strong TH2 component. The relative pathogenic contributions of the TH17 and TH2 axes in creating the Asian AD phenotype need to be tested in future clinical trials with appropriate targeted therapeutics.


PLOS ONE | 2012

Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer.

Ryung S. Kim; Alvaro Avivar-Valderas; Yeriel Estrada; Paloma Bragado; Maria Soledad Sosa; Julio A. Aguirre-Ghiso; Jeffrey E. Segall

Breast cancers can recur after removal of the primary tumor and treatment to eliminate remaining tumor cells. Recurrence may occur after long periods of time during which there are no clinical symptoms. Tumor cell dormancy may explain these prolonged periods of asymptomatic residual disease and treatment resistance. We generated a dormancy gene signature from published experimental models and applied it to both breast cancer cell line expression data as well as four published clinical studies of primary breast cancers. We found that estrogen receptor (ER) positive breast cell lines and primary tumors have significantly higher dormancy signature scores (P<0.0000001) than ER- cell lines and tumors. In addition, a stratified analysis combining all ER+ tumors in four studies indicated 2.1 times higher hazard of recurrence among patients whose tumors had low dormancy scores (LDS) compared to those whose tumors had high dormancy scores (HDS) (p<0.000005). The trend was shown in all four individual studies. Suppression of two dormancy genes, BHLHE41 and NR2F1, resulted in increased in vivo growth of ER positive MCF7 cells. The patient data analysis suggests that disseminated ER positive tumor cells carrying a dormancy signature are more likely to undergo prolonged dormancy before resuming metastatic growth. Furthermore, genes identified with this approach might provide insight into the mechanisms of dormancy onset and maintenance as well as dormancy models using human breast cancer cell lines.


Pigment Cell & Melanoma Research | 2009

Positive crosstalk between ERK and p38 in melanoma stimulates migration and in vivo proliferation.

Yeriel Estrada; Jianli Dong; Liliana Ossowski

Melanoma is one of the most therapy‐resistant cancers. Activating mutations in BRAF and NRAS are the source of extracellular signal regulated protein kinase (ERK) pathway activation. We show that melanoma cell lines, originating in different metastatic sites, with BRAF or NRAS mutations, in addition to active mitogen activated protein kinase (MAPK)–ERK, also have highly activated stress activated protein kinase (SAPK)‐p38. This is in direct contrast to carcinoma cells in which the activity of the two kinases appears to be mutually exclusive; high level of p38 activity inhibits, through a negative feedback, ERK activity and prevents tumorigenesis. Melanomas are insensitive to ERK inhibition by p38 and utilize p38‐signaling pathway for migration and growth in vivo. We found a positive functional loop linking the high ERK activity to surface expression of αVβ3‐integrin. This integrin, by interacting with vitronectin, induces p38 activity and increases IL‐8 production, enhancing cell migration. Because the negative loop from p38 to ERK is lost, the two kinases can remain simultaneously activated. Inhibition of ERK and p38 activities is more effective in blocking in vivo growth than inhibition of each kinase individually. Future therapies might have to consider targeting of both pathways.


The Journal of Allergy and Clinical Immunology | 2015

Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing

Mayte Suárez-Fariñas; Benjamin Ungar; Shinji Noda; Anjali Shroff; Yasaman Mansouri; Judilyn Fuentes-Duculan; Annette Czernik; Xiuzhong Zheng; Yeriel Estrada; Hui Xu; Xiangyu Peng; Avner Shemer; James G. Krueger; Mark Lebwohl; Emma Guttman-Yassky

BACKGROUND Alopecia areata (AA) is a common T cell-mediated disorder with limited therapeutics. A molecular profile of cytokine pathways in AA tissues is lacking. Although studies have focused on TH1/IFN-γ responses, several observations support a shared genetic background between AA and atopy. OBJECTIVE We sought to define the AA scalp transcriptome and associated biomarkers with comparisons with atopic dermatitis (AD) and psoriasis. METHODS We performed microarray and RT-PCR profiling of 27 lesional and 17 nonlesional scalp samples from patients with AA for comparison with normal scalp samples (n = 6). AA gene expression was also compared with samples from patients with lesional or nonlesional AD and those with psoriasis. A fold change of greater than 1.5 and a false discovery rate of less than 0.05 were used for differentially expressed genes (DEGs). RESULTS We established the AA transcriptomes (lesional vs nonlesional: 734 DEGs [297 upregulated and 437 downregulated]; lesional vs normal: 4230 DEGs [1980 upregulated and 2250 downregulated]), including many upregulated immune and downregulated hair keratin genes. Equally impressive as upregulation in TH1/interferon markers (IFNG and CXCL10/CXCL9) were those noted in TH2 (IL13, CCL18, CCL26, thymic stromal lymphopoietin, and periostin), TH9/IL-9, IL-23 (p40 and p19), and IL-16 mediators (all P < .05). There were no increases in TH17/TH22 markers. Hair keratin (KRT) expressions (ie, KRT86 and KRT85) were significantly suppressed in lesional skin. Greater scalp involvement (>25%) was associated with greater immune and keratin dysregulation and larger abnormalities in nonlesional scalp samples (ie, CXCL10 and KRT85). CONCLUSIONS Our data associate the AA signature with TH2, TH1, IL-23, and IL-9/TH9 cytokine activation, suggesting consideration of anti-TH2, anti-TH1, and anti-IL-23 targeting strategies. Similar to psoriasis and AD, clinical trials with selective antagonists are required to dissect key pathogenic pathways.


Nature Communications | 2015

NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes

Maria Soledad Sosa; Falguni Parikh; Alexandre Gaspar Maia; Yeriel Estrada; Almudena Bosch; Paloma Bragado; Esther Ekpin; Ajish George; Yang Zheng; Hung Ming Lam; Colm Morrissey; Chi Yeh Chung; Eduardo F. Farias; Emily Bernstein; Julio A. Aguirre-Ghiso

Metastases can originate from disseminated tumor cells (DTCs), which may be dormant for years before reactivation. Here we find that the orphan nuclear receptor NR2F1 is epigenetically upregulated in experimental HNSCC dormancy models and in DTCs from prostate cancer patients carrying dormant disease for 7–18 years. NR2F1-dependent dormancy is recapitulated by a co-treatment with the DNA demethylating agent 5-Aza-C and retinoic acid across various cancer types. NR2F1-induced quiescence is dependent on SOX9, RARβ and CDK inhibitors. Intriguingly, NR2F1 induces global chromatin repression and the pluripotency gene NANOG, which contributes to dormancy of DTCs in the bone marrow. When NR2F1 is blocked in vivo, growth arrest or survival of dormant DTCs is interrupted in different organs. We conclude that NR2F1 is a critical node in dormancy induction and maintenance by integrating epigenetic programs of quiescence and survival in DTCs.


Cancer Research | 2014

Inducible Nitric Oxide Synthase Drives mTOR Pathway Activation and Proliferation of Human Melanoma by Reversible Nitrosylation of TSC2

Esther Lopez-Rivera; Padmini Jayaraman; Falguni Parikh; Michael A. Davies; Suhendan Ekmekcioglu; Sudeh Izadmehr; Denái R. Milton; Jerry E. Chipuk; Elizabeth A. Grimm; Yeriel Estrada; Julio A. Aguirre-Ghiso; Andrew G. Sikora

Melanoma is one of the cancers of fastest-rising incidence in the world. Inducible nitric oxide synthase (iNOS) is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K-AKT-mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p70 ribosomal S6 kinase (p-P70S6K), p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of tuberous sclerosis complex (TSC) 2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Ras homolog enriched in brain (Rheb), a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of the mTOR pathway members. Exogenously supplied NO was also sufficient to reverse the mTOR pathway inhibition by the B-Raf inhibitor vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers.


Embo Molecular Medicine | 2013

A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α.

Ulrike Begley; Maria Soledad Sosa; Alvaro Avivar-Valderas; Ashish Patil; Lauren Endres; Yeriel Estrada; Clement T. Y. Chan; Dan Su; Peter C. Dedon; Julio A. Aguirre-Ghiso; Thomas J. Begley

Emerging evidence points to aberrant regulation of translation as a driver of cell transformation in cancer. Given the direct control of translation by tRNA modifications, tRNA modifying enzymes may function as regulators of cancer progression. Here, we show that a tRNA methyltransferase 9‐like (hTRM9L/KIAA1456) mRNA is down‐regulated in breast, bladder, colorectal, cervix and testicular carcinomas. In the aggressive SW620 and HCT116 colon carcinoma cell lines, hTRM9L is silenced and its re‐expression and methyltransferase activity dramatically suppressed tumour growth in vivo. This growth inhibition was linked to decreased proliferation, senescence‐like G0/G1‐arrest and up‐regulation of the RB interacting protein LIN9. Additionally, SW620 cells re‐expressing hTRM9L did not respond to hypoxia via HIF1‐α‐dependent induction of GLUT1. Importantly, hTRM9L‐negative tumours were highly sensitive to aminoglycoside antibiotics and this was associated with altered tRNA modification levels compared to antibiotic resistant hTRM9L‐expressing SW620 cells. Our study links hTRM9L and tRNA modifications to inhibition of tumour growth via LIN9 and HIF1‐α‐dependent mechanisms. It also suggests that aminoglycoside antibiotics may be useful to treat hTRM9L‐deficient tumours.


The Journal of Allergy and Clinical Immunology | 2016

Diverse activation and differentiation of multiple B-cell subsets in patients with atopic dermatitis but not in patients with psoriasis

Tali Czarnowicki; Juana Gonzalez; Kathleen M. Bonifacio; Avner Shemer; Peng Xiangyu; Norma Kunjravia; Dana Malajian; Judilyn Fuentes-Duculan; Hitokazu Esaki; Shinji Noda; Yeriel Estrada; Hui Xu; Xiuzhong Zheng; James G. Krueger; Emma Guttman-Yassky

BACKGROUND Atopic dermatitis (AD) and psoriasis pathogeneses involve skin barrier impairment and immune dysregulation; however, the contribution of B-cell imbalances to these diseases has not yet been determined. OBJECTIVE We sought to quantify B-cell populations and antibody-secreting cells in the blood of patients with AD, patients with psoriasis, and control subjects. METHODS We studied 34 adults with moderate-to-severe AD (mean SCORAD score, 65), 24 patients with psoriasis (mean Psoriasis Area and Severity Index score, 16), and 27 healthy subjects using an 11-color flow cytometric antibody panel. IgD/CD27 and CD24/CD38 core gating systems were used to determine frequencies of plasmablasts and naive, memory, transitional, and activated B cells. RESULTS We measured increased CD19(+)CD20(+) B-cell counts in the skin and blood of patients with AD (P < .01). Significantly higher frequencies of chronically activated CD27(+) memory and nonswitched memory B cells were observed in patients with AD (P < .05), with lower values of double-negative populations (4% for patients with AD vs. 7% for patients with psoriasis [P = .001] and 6% for control subjects [P = .02]). CD23 expression was highest in patients with AD and correlated with IgE levels (P < .01) and disease severity (r = 0.6, P = .0002). Plasmablast frequencies and IgE expression were highest in all memory subsets of patients with AD (P < .01). Finally, CD19(+)CD24(++)CD38(++) transitional and CD19(+)CD24(-)CD38(-) new memory B-cell counts were higher in patients with AD versus those in patients with psoriasis (2.8% vs. 1.4% [P = .001] and 9.2% vs. 5.7% [P = .02], respectively). CONCLUSIONS AD is accompanied by systemic expansion of transitional and chronically activated CD27(+) memory, plasmablast, and IgE-expressing memory subsets. These data create a critical basis for the future understanding of this debilitating skin disease.


PLOS ONE | 2012

Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties

Paloma Bragado; Yeriel Estrada; Maria Soledad Sosa; Alvaro Avivar-Valderas; David Cannan; Eric M. Genden; Marita Teng; Aparna C. Ranganathan; Huei-Chi Wen; Avnish Kapoor; Emily Bernstein; Julio A. Aguirre-Ghiso

Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more persistent strategies.

Collaboration


Dive into the Yeriel Estrada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Xu

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Mayte Suárez-Fariñas

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Kunal Malik

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Huei-Chi Wen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Julio A. Aguirre-Ghiso

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Tali Czarnowicki

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Xiangyu Peng

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge