Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yew-Soon Ong is active.

Publication


Featured researches published by Yew-Soon Ong.


IEEE Transactions on Evolutionary Computation | 2004

Meta-Lamarckian learning in memetic algorithms

Yew-Soon Ong; Andy J. Keane

Over the last decade, memetic algorithms (MAs) have relied on the use of a variety of different methods as the local improvement procedure. Some recent studies on the choice of local search method employed have shown that this choice significantly affects the efficiency of problem searches. Given the restricted theoretical knowledge available in this area and the limited progress made on mitigating the effects of incorrect local search method choice, we present strategies for MA control that decide, at runtime, which local method is chosen to locally improve the next chromosome. The use of multiple local methods during a MA search in the spirit of Lamarckian learning is here termed Meta-Lamarckian learning. Two adaptive strategies for Meta-Lamarckian learning are proposed in this paper. Experimental studies with Meta-Lamarckian learning strategies on continuous parametric benchmark problems are also presented. Further, the best strategy proposed is applied to a real-world aerodynamic wing design problem and encouraging results are obtained. It is shown that the proposed approaches aid designers working on complex engineering problems by reducing the probability of employing inappropriate local search methods in a MA, while at the same time, yielding robust and improved design search performance.


systems man and cybernetics | 2006

Classification of adaptive memetic algorithms: a comparative study

Yew-Soon Ong; Meng-Hiot Lim; Ning Zhu; Kok Wai Wong

Adaptation of parameters and operators represents one of the recent most important and promising areas of research in evolutionary computations; it is a form of designing self-configuring algorithms that acclimatize to suit the problem in hand. Here, our interests are on a recent breed of hybrid evolutionary algorithms typically known as adaptive memetic algorithms (MAs). One unique feature of adaptive MAs is the choice of local search methods or memes and recent studies have shown that this choice significantly affects the performances of problem searches. In this paper, we present a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed. Then the asymptotic convergence properties of the adaptive MAs considered are analyzed according to the classification. Subsequently, empirical studies on representatives of adaptive MAs for different type-level meme adaptations using continuous benchmark problems indicate that global-level adaptive MAs exhibit better search performances. Finally we conclude with some promising research directions in the area.


IEEE Transactions on Evolutionary Computation | 2011

A Multi-Facet Survey on Memetic Computation

Xianshun Chen; Yew-Soon Ong; Meng-Hiot Lim; Kay Chen Tan

Memetic computation is a paradigm that uses the notion of meme(s) as units of information encoded in computational representations for the purpose of problem-solving. It covers a plethora of potentially rich meme-inspired computing methodologies, frameworks and operational algorithms including simple hybrids, adaptive hybrids and memetic automaton. In this paper, a comprehensive multi-facet survey of recent research in memetic computation is presented.


systems man and cybernetics | 2007

Wrapper–Filter Feature Selection Algorithm Using a Memetic Framework

Zexuan Zhu; Yew-Soon Ong; Manoranjan Dash

This correspondence presents a novel hybrid wrapper and filter feature selection algorithm for a classification problem using a memetic framework. It incorporates a filter ranking method in the traditional genetic algorithm to improve classification performance and accelerate the search in identifying the core feature subsets. Particularly, the method adds or deletes a feature from a candidate feature subset based on the univariate feature ranking information. This empirical study on commonly used data sets from the University of California, Irvine repository and microarray data sets shows that the proposed method outperforms existing methods in terms of classification accuracy, number of selected features, and computational efficiency. Furthermore, we investigate several major issues of memetic algorithm (MA) to identify a good balance between local search and genetic search so as to maximize search quality and efficiency in the hybrid filter and wrapper MA


Neurocomputing | 2008

A fast pruned-extreme learning machine for classification problem

Hai-Jun Rong; Yew-Soon Ong; Ah-Hwee Tan; Zexuan Zhu

Extreme learning machine (ELM) represents one of the recent successful approaches in machine learning, particularly for performing pattern classification. One key strength of ELM is the significantly low computational time required for training new classifiers since the weights of the hidden and output nodes are randomly chosen and analytically determined, respectively. In this paper, we address the architectural design of the ELM classifier network, since too few/many hidden nodes employed would lead to underfitting/overfitting issues in pattern classification. In particular, we describe the proposed pruned-ELM (P-ELM) algorithm as a systematic and automated approach for designing ELM classifier network. P-ELM uses statistical methods to measure the relevance of hidden nodes. Beginning from an initial large number of hidden nodes, irrelevant nodes are then pruned by considering their relevance to the class labels. As a result, the architectural design of ELM network classifier can be automated. Empirical study of P-ELM on several commonly used classification benchmark problems and with diverse forms of hidden node functions show that the proposed approach leads to compact network classifiers that generate fast response and robust prediction accuracy on unseen data, comparing with traditional ELM and other popular machine learning approaches.


systems man and cybernetics | 2007

Combining Global and Local Surrogate Models to Accelerate Evolutionary Optimization

Zongzhao Zhou; Yew-Soon Ong; Prasanth B. Nair; Andy J. Keane; Kai Yew Lum

In this paper, we present a novel surrogate-assisted evolutionary optimization framework for solving computationally expensive problems. The proposed framework uses computationally cheap hierarchical surrogate models constructed through online learning to replace the exact computationally expensive objective functions during evolutionary search. At the first level, the framework employs a data-parallel Gaussian process based global surrogate model to filter the evolutionary algorithm (EA) population of promising individuals. Subsequently, these potential individuals undergo a memetic search in the form of Lamarckian learning at the second level. The Lamarckian evolution involves a trust-region enabled gradient-based search strategy that employs radial basis function local surrogate models to accelerate convergence. Numerical results are presented on a series of benchmark test functions and on an aerodynamic shape design problem. The results obtained suggest that the proposed optimization framework converges to good designs on a limited computational budget. Furthermore, it is shown that the new algorithm gives significant savings in computational cost when compared to the traditional evolutionary algorithm and other surrogate assisted optimization frameworks


IEEE Transactions on Evolutionary Computation | 2009

A Probabilistic Memetic Framework

Quang Huy Nguyen; Yew-Soon Ong; Meng-Hiot Lim

Memetic algorithms (MAs) represent one of the recent growing areas in evolutionary algorithm (EA) research. The term MAs is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MAs are also referred to in the literature as Baldwinian EAs, Lamarckian EAs, cultural algorithms, or genetic local searches. In the last decade, MAs have been demonstrated to converge to high-quality solutions more efficiently than their conventional counterparts on a wide range of real-world problems. Despite the success and surge in interests on MAs, many of the successful MAs reported have been crafted to suit problems in very specific domains. Given the restricted theoretical knowledge available in the field of MAs and the limited progress made on formal MA frameworks, we present a novel probabilistic memetic framework that models MAs as a process involving the decision of embracing the separate actions of evolution or individual learning and analyzing the probability of each process in locating the global optimum. Further, the framework balances evolution and individual learning by governing the learning intensity of each individual according to the theoretical upper bound derived while the search progresses. Theoretical and empirical studies on representative benchmark problems commonly used in the literature are presented to demonstrate the characteristics and efficacies of the probabilistic memetic framework. Further, comparisons to recent state-of-the-art evolutionary algorithms, memetic algorithms, and hybrid evolutionary-local search demonstrate that the proposed framework yields robust and improved search performance.


Future Generation Computer Systems | 2007

Efficient Hierarchical Parallel Genetic Algorithms using Grid computing

Dudy Lim; Yew-Soon Ong; Yaochu Jin; Bernhard Sendhoff; Bu-Sung Lee

In this paper, we present an efficient Hierarchical Parallel Genetic Algorithm framework using Grid computing (GE-HPGA). The framework is developed using standard Grid technologies, and has two distinctive features: (1) an extended GridRPC API to conceal the high complexity of the Grid environment, and (2) a metascheduler for seamless resource discovery and selection. To assess the practicality of the framework, a theoretical analysis of the possible speed-up offered is presented. An empirical study on GE-HPGA using a benchmark problem and a realistic aerodynamic airfoil shape optimization problem for diverse Grid environments having different communication protocols, cluster sizes, processing nodes, at geographically disparate locations also indicates that the proposed GE-HPGA using Grid computing offers a credible framework for providing a significant speed-up to evolutionary design optimization in science and engineering.


IEEE Transactions on Evolutionary Computation | 2006

Max-min surrogate-assisted evolutionary algorithm for robust design

Yew-Soon Ong; Prasanth B. Nair; Kai Yew Lum

Solving design optimization problems using evolutionary algorithms has always been perceived as finding the optimal solution over the entire search space. However, the global optima may not always be the most desirable solution in many real-world engineering design problems. In practice, if the global optimal solution is very sensitive to uncertainties, for example, small changes in design variables or operating conditions, then it may not be appropriate to use this highly sensitive solution. In this paper, we focus on combining evolutionary algorithms with function approximation techniques for robust design. In particular, we investigate the application of robust genetic algorithms to problems with high dimensions. Subsequently, we present a novel evolutionary algorithm based on the combination of a max-min optimization strategy with a Baldwinian trust-region framework employing local surrogate models for reducing the computational cost associated with robust design problems. Empirical results are presented for synthetic test functions and aerodynamic shape design problems to demonstrate that the proposed algorithm converges to robust optimum designs on a limited computational budget


Pattern Recognition | 2007

Markov blanket-embedded genetic algorithm for gene selection

Zexuan Zhu; Yew-Soon Ong; Manoranjan Dash

Microarray technologies enable quantitative simultaneous monitoring of expression levels for thousands of genes under various experimental conditions. This new technology has provided a new way of biological classification on a genome-wide scale. However, predictive accuracy is affected by the presence of thousands of genes many of which are unnecessary from the classification point of view. So, a key issue of microarray data classification is to identify the smallest possible set of genes that can achieve good predictive accuracy. In this study, we propose a novel Markov blanket-embedded genetic algorithm (MBEGA) for gene selection problem. In particular, the embedded Markov blanket-based memetic operators add or delete features (or genes) from a genetic algorithm (GA) solution so as to quickly improve the solution and fine-tune the search. Empirical results on synthetic and microarray benchmark datasets suggest that MBEGA is effective and efficient in eliminating irrelevant and redundant features based on both Markov blanket and predictive power in classifier model. A detailed comparative study with other methods from each of filter, wrapper, and standard GA shows that MBEGA gives a best compromise among all four evaluation criteria, i.e., classification accuracy, number of selected genes, computational cost, and robustness.

Collaboration


Dive into the Yew-Soon Ong's collaboration.

Top Co-Authors

Avatar

Meng-Hiot Lim

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Abhishek Gupta

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xianshun Chen

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Dudy Lim

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Ah-Hwee Tan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siwei Jiang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge