Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yewseok Suh is active.

Publication


Featured researches published by Yewseok Suh.


Carcinogenesis | 2008

A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-κB-signaling pathways

Yewseok Suh; Farrukh Afaq; Jeremy J. Johnson; Hasan Mukhtar

Overexpression of cyclooxygenase 2 (COX2) and uncontrolled wingless and Int (Wnt)-signaling pathway have long been suggested to play crucial roles in colorectal cancer. Studies show that selective COX2 inhibitors possess great potential as chemopreventive agents for colon cancer. Recent studies suggest that targeting COX2 and epidermal growth factor receptor (EGFR) may provide better therapeutic strategy than inhibiting either single target and that this may alleviate the problem of COX2 inhibitor-associated side effects. Therefore, there have been intensive efforts to develop novel dietary substances that target COX2 and EGFR activation. Fisetin is a naturally occurring flavonoid commonly found in various vegetables and fruits. We found that the treatment of COX2-overexpressing HT29 human colon cancer cells with fisetin (30-120 microM) resulted in induction of apoptosis, downregulation of COX2 protein expression without affecting COX1 and inhibited the secretion of prostaglandin E2. Treatment of cells with fisetin also inhibited Wnt-signaling activity through downregulation of beta-catenin and T cell factor 4 and decreased the expression of target genes such as cyclin D1 and matrix metalloproteinase 7. Fisetin treatment of cells also inhibited the activation of EGFR and nuclear factor-kappa B (NF-kappaB). Finally, the formation of colonies in soft agar was suppressed by fisetin treatment. Taken together, we provide evidence that the plant flavonoid fisetin can induce apoptosis and suppress the growth of colon cancer cells by inhibition of COX2- and Wnt/EGFR/NF-kappaB-signaling pathways. We suggest that fisetin could be a useful agent for prevention and treatment of colon cancer.


Carcinogenesis | 2010

Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells

Yewseok Suh; Farrukh Afaq; Naghma Khan; Jeremy J. Johnson; Fatima H. Khusro; Hasan Mukhtar

The mammalian target of rapamycin (mTOR) kinase is an important component of PTEN/PI3K/Akt signaling pathway, which is frequently deregulated in prostate cancer (CaP). Recent studies suggest that targeting PTEN/PI3K/Akt and mTOR signaling pathway could be an effective strategy for the treatment of hormone refractory CaP. Here, we show that the treatment of androgen-independent and PTEN-negative human CaP PC3 cells with fisetin, a dietary flavonoid, resulted in inhibition of mTOR kinase signaling pathway. Treatment of cells with fisetin inhibited mTOR activity and downregulated Raptor, Rictor, PRAS40 and GbetaL that resulted in loss of mTOR complexes (mTORC)1/2 formation. Fisetin also activated the mTOR repressor TSC2 through inhibition of Akt and activation of AMPK. Fisetin-mediated inhibition of mTOR resulted in hypophosphorylation of 4EBP1 and suppression of Cap-dependent translation. We also found that fisetin treatment leads to induction of autophagic-programmed cell death rather than cytoprotective autophagy as shown by small interfering RNA Beclin1-knockdown and autophagy inhibitor. Taken together, we provide evidence that fisetin functions as a dual inhibitor of mTORC1/2 signaling leading to inhibition of Cap-dependent translation and induction of autophagic cell death in PC3 cells. These results suggest that fisetin could be a useful chemotherapeutic agent in treatment of hormone refractory CaP.


Cancer Letters | 2008

Dietary agents for chemoprevention of prostate cancer

Deeba N. Syed; Yewseok Suh; Farrukh Afaq; Hasan Mukhtar

Prostate cancer (CaP) is the leading cause of cancer-related deaths in American men, responsible for over 29,000 deaths in the year 2007. Chemoprevention is a plausible and cost-effective approach to reduce cancer morbidity and mortality through inhibition of precancerous events before the occurrence of clinical disease. Indeed, CaP is an ideal candidate disease for chemopreventive intervention as it is typically diagnosed in the elderly population with a relatively slower rate of growth and progression. The potential of dietary substances to act as chemopreventive agents against CaP is increasingly appreciated. Further, epidemiological studies have identified significant correlations between CaP incidence and dietary habits. It is hoped that, combining the knowledge based on agents with targets, we will be able to build an armamentarium of naturally occurring chemopreventive substances that could prevent or slow down the development and progression of CaP. In this review, we have summarized the findings from clinical and preclinical studies on dietary agents including green tea, pomegranate, lupeol, fisetin, and delphinidin that are currently being investigated in our laboratory for their chemopreventive potential against CaP.


Clinical Cancer Research | 2008

Lupeol Inhibits Growth of Highly Aggressive Human Metastatic Melanoma Cells In vitro and In vivo by Inducing Apoptosis

Mohammad Saleem; Nityanand Maddodi; Mohammad Abu Zaid; Naghma Khan; Bilal Bin Hafeez; Mohammad Asim; Yewseok Suh; Jung Mi Yun; Vijayasaradhi Setaluri; Hasan Mukhtar

Purpose: Poor prognosis of metastatic melanoma mandates the development of novel strategies for its treatment and prevention. In this study, the effect of lupeol, a diet-based triterpene, was determined on the growth and tumorigenicity of human melanoma cells in vitro and in vivo. Experimental Design: Normal human melanocytes, and human metastatic (451Lu) and nonmetastatic (WM35) cells were treated with lupeol; its effect on growth, proliferation, and apoptosis were evaluated. Further athymic nude mice bearing 451Lu cell–originated tumors were administered with lupeol thrice a week, and its effect on tumor growth and surrogate biomarkers was evaluated. Results: Lupeol significantly decreased the viability of 451Lu and WM35 melanoma cells but had only a marginal effect on normal human melanocyte cells at similar doses. Lupeol treatment of 451Lu cells caused (a) G1-S phase cell cycle arrest and apoptosis; (b) down-regulation of Bcl2 and up-regulation of Bax; (c) activation of caspase-3 and induction of poly(ADP)ribose polymerase cleavage; (d) decreased expression of cyclin D1, cyclin D2, and cdk2; and (e) increased expression of p21 protein. Next, lupeol significantly reduced 451Lu tumor growth in athymic nude mice and modulated the expression of proliferation markers, apoptotic markers, and cell cycle regulatory molecules in tumor xenografts. Conclusion: Our findings showed the anticancer efficacy of lupeol with mechanistic rationale against metastatic human melanoma cells. We suggest that lupeol, alone or as an adjuvant to current therapies, could be useful for the management of human melanoma.


International Journal of Cancer | 2012

Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin.

Naghma Khan; Farrukh Afaq; Fatima H. Khusro; Vaqar M. Adhami; Yewseok Suh; Hasan Mukhtar

Lung cancer is one of the most commonly occurring malignancies. It has been reported that mammalian target of rapamycin (mTOR) is phosphorylated in lung cancer and its activation was more frequent in tumors with overexpression of phosphatidylinositol 3‐kinase (PI3K)/Akt. Therefore, dual inhibitors of PI3K/Akt and mTOR signaling could be valuable agents for treating lung cancer. In the present study, we show that fisetin, a dietary tetrahydroxyflavone inhibits cell growth with the concomitant suppression of PI3K/Akt and mTOR signaling in human nonsmall cell lung cancer (NSCLC) cells. Using autodock 4, we found that fisetin physically interacts with the mTOR complex at two sites. Fisetin treatment was also found to reduce the formation of A549 cell colonies in a dose‐dependent manner. Treatment of cells with fisetin caused decrease in the protein expression of PI3K (p85 and p110), inhibition of phosphorylation of Akt, mTOR, p70S6K1, eIF‐4E and 4E‐BP1. Fisetin‐treated cells also exhibited dose‐dependent inhibition of the constituents of mTOR signaling complex such as Rictor, Raptor, GβL and PRAS40. There was an increase in the phosphorylation of AMPKα and a decrease in the phosphorylation of TSC2 on treatment of cells with fisetin. We also found that treatment of cells with mTOR inhibitor rapamycin and mTOR‐siRNA caused decrease in phosphorylation of mTOR and its target proteins which were further downregulated on treatment with fisetin, suggesting that these effects are mediated in part, through mTOR signaling. Our results show that fisetin suppressed PI3K/Akt and mTOR signaling in NSCLC cells and thus, could be developed as a chemotherapeutic agent against human lung cancer.


Carcinogenesis | 2009

Lupeol inhibits proliferation of human prostate cancer cells by targeting β-catenin signaling

Mohammad Saleem; Imtiyaz Murtaza; Rohinton Tarapore; Yewseok Suh; Vaqar M. Adhami; Jeremy J. Johnson; Imtiaz A. Siddiqui; Naghma Khan; Mohammad Asim; Bilal Bin Hafeez; Mohammed Talha Shekhani; Benyi Li; Hasan Mukhtar

Lupeol, a dietary triterpene, was shown to decrease serum prostate-specific antigen levels and inhibit the tumorigenicity of prostate cancer (CaP) cells in vivo. Here, we show that Lupeol inhibits the proliferative potential of CaP cells and delineated its mechanism of action. Employing a focused microarray of human CaP-associated genes, we found that Lupeol significantly modulates the expression level of genes such as ERBB2, tissue inhibitor of metalloproteinases-3, cyclin D1 and matrix metalloproteinase (MMP)-2 that are known to be associated with proliferation and survival. A common feature of these genes is that all of them are known to either regulate or act as downstream target of beta-catenin signaling that is highly aberrant in CaP patients. Lupeol treatment significantly (1) reduced levels of beta-catenin in the cytoplasmic and nuclear fractions, (2) modulated expression levels of glycogen synthase kinase 3 beta (GSK3beta)-axin complex (regulator of beta-catenin stability), (3) decreased the expression level and enzymatic activity of MMP-2 (downstream target of beta-catenin), (4) reduced the transcriptional activation of T Cell Factor (TCF) responsive element (marker for beta-catenin signaling) in pTK-TCF-Luc-transfected cells and (5) decreased the transcriptional activation of MMP-2 gene in pGL2-MMP-2-Luc-transfected cells. Effects of Lupeol treatment on beta-catenin degradation were significantly reduced in CaP cells where axin is knocked down through small interfering RNA transfection and GSK3beta activity is blocked. Collectively, these data suggest the multitarget efficacy of Lupeol on beta-catenin-signaling network thus resulting in the inhibition CaP cell proliferation. We suggest that Lupeol could be developed as an agent for chemoprevention as well as chemotherapy of human CaP.


Cancer Prevention Research | 2010

Disruption of androgen and estrogen receptor activity in prostate cancer by a novel dietary diterpene carnosol: implications for chemoprevention

Jeremy J. Johnson; Deeba N. Syed; Yewseok Suh; Chenelle R. Heren; Mohammad Saleem; Imtiaz A. Siddiqui; Hasan Mukhtar

Emerging data are suggesting that estrogens, in addition to androgens, may also be contributing to the development of prostate cancer (PCa). In view of this notion, agents that target estrogens, in addition to androgens, may be a novel approach for PCa chemoprevention and treatment. Thus, the identification and development of nontoxic dietary agents capable of disrupting androgen receptor (AR) in addition to estrogen receptor (ER) could be extremely useful in the management of PCa. Through molecular modeling, we found that carnosol, a dietary diterpene, fits within the ligand-binding domain of both AR and ER-α. Using a time-resolved fluorescence resonance energy transfer assay, we found that carnosol interacts with both AR and ER-α and additional experiments confirmed that it functions as a receptor antagonist with no agonist effects. LNCaP, 22Rv1, and MCF7 cells treated with carnosol (20-40 μmol/L) showed decreased protein expression of AR and ER-α. Oral administration of carnosol at 30 mg/kg 5 days weekly for 28 days to 22Rv1 PCa xenografted mice suppressed tumor growth by 36% (P = 0.028) and was associated with a decrease in serum prostate-specific antigen by 26% (P = 0.0042). These properties make carnosol unique to any known antiandrogen or antiestrogen investigated thus far for the simultaneous disruption of AR and ER-α. We suggest that carnosol may be developed or chemically modified through more rigorous structure-activity relationship studies for a new class of investigational agents—a dual AR/ER modulator. Cancer Prev Res; 3(9); 1112–23. ©2010 AACR.


PLOS Genetics | 2014

Syndecan-1 is required to maintain intradermal fat and prevent cold stress.

Ildiko Kasza; Yewseok Suh; Damian Wollny; Rod J. Clark; Avtar Roopra; Ormond A. MacDougald; Timothy A. Shedd; David W. Nelson; Mei I. Yen; Chi Liang Eric Yen; Caroline M. Alexander

Homeostatic temperature regulation is fundamental to mammalian physiology and is controlled by acute and chronic responses of local, endocrine and nervous regulators. Here, we report that loss of the heparan sulfate proteoglycan, syndecan-1, causes a profoundly depleted intradermal fat layer, which provides crucial thermogenic insulation for mammals. Mice without syndecan-1 enter torpor upon fasting and show multiple indicators of cold stress, including activation of the stress checkpoint p38α in brown adipose tissue, liver and lung. The metabolic phenotype in mutant mice, including reduced liver glycogen, is rescued by housing at thermoneutrality, suggesting that reduced insulation in cool temperatures underlies the observed phenotypes. We find that syndecan-1, which functions as a facultative lipoprotein uptake receptor, is required for adipocyte differentiation in vitro. Intradermal fat shows highly dynamic differentiation, continuously expanding and involuting in response to hair cycle and ambient temperature. This physiology probably confers a unique role for Sdc1 in this adipocyte sub-type. The PPARγ agonist rosiglitazone rescues Sdc1−/− intradermal adipose tissue, placing PPARγ downstream of Sdc1 in triggering adipocyte differentiation. Our study indicates that disruption of intradermal adipose tissue development results in cold stress and complex metabolic pathology.


Archives of Biochemistry and Biophysics | 2014

MAGE proteins regulate KRAB zinc finger transcription factors and KAP1 E3 ligase activity.

Tony Z. Xiao; Yewseok Suh; B. Jack Longley

Expression of Melanoma AntiGen Encoding (MAGE) genes, particularly MAGE-A3, has been correlated with aggressive clinical course, the acquisition of resistance to chemotherapy and poor clinical outcomes of melanoma and other malignancies. MAGE proteins bind to KAP1, a gene repressor and ubiquitin E3 ligase which also binds KRAB domain containing zinc finger transcription factors (KZNFs), and MAGE expression may affect KZNF mediated gene regulation. To investigate mechanisms for these effects, we tested the hypothesis that differences in KRAB domain composition affect KZNF poly-ubiquitination and determine whether MAGE expression increases, decreases, or has no effect on KZNFs mediated gene repression. Using an integrated reporter gene responsive to repression by KRAB domain fusion proteins, we found that MAGE-A3 relieved KZNF mediated repression and induced KZNF poly-ubiquitination and degradation in association with expression of the A+B box KRAB domain. In contrast, MAGE-A3 enhanced KAP1 mediated repression of KZNFs expressing A or A+b box KRAB domains but caused no increase in poly-ubiquitination or degradation. MAGE-A3 has no significant impact on KZNFs with KRAB domains containing the Scan box motif. These data support our hypothesis by showing that the effects of MAGE-A3 on gene repression depend on the type of KZNF KRAB domain involved.


Pharmaceutical Research | 2008

Carnosol, a dietary diterpene, displays growth inhibitory effects in human prostate cancer PC3 cells leading to G2-phase cell cycle arrest and targets the 5'-AMP-activated protein kinase (AMPK) pathway

Jeremy J. Johnson; Deeba N. Syed; Chenelle R. Heren; Yewseok Suh; Vaqar M. Adhami; Hasan Mukhtar

Collaboration


Dive into the Yewseok Suh's collaboration.

Top Co-Authors

Avatar

Hasan Mukhtar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jeremy J. Johnson

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Farrukh Afaq

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Naghma Khan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Deeba N. Syed

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Vaqar M. Adhami

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bilal Bin Hafeez

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Chenelle R. Heren

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Fatima H. Khusro

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Imtiaz A. Siddiqui

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge