Yi Ching Lo
Kaohsiung Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yi Ching Lo.
European Journal of Pharmaceutical Sciences | 2012
Ya Yun Hsu; Cheng Sheng Chen; Sheng Nan Wu; Yuh Jyh Jong; Yi Ching Lo
Berberine (BBR) is a well-known anti-diabetic herbal medicine in Asia due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. Here, we identified the critical role of phosphatidylinositol 3-kinase (PI3K)/Akt involved BBR cellular defense mechanisms and first revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2)/heme oxygenase (HO)-1 induction in NSC34 motor neuron-like cells. BBR (0.1-10 nM) led to increasing insulin receptor expression, Akt phosphorylation and enhanced oxidant-sensitive Nrf2/HO-1 induction, which were blocked by a PI3K inhibitor, LY294002. In H(2)O(2)-treated cells, BBR significantly attenuated ROS production and increased cell viability, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (HO-1 and Nrf2), which also were blocked by LY294002. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential and decreasing the oxygen consumption rate. BBR-induced anti-apoptotic function was demonstrated by increasing anti-apoptotic protein Bcl-2 and survival of motor neuron protein (SMN) and by decreasing apoptotic proteins (cytochrome c, Bax and caspase). These results suggest that BBR, which is active at nanomolar concentration, is a potential neuroprotective agent via PI3K/Akt-dependent cytoprotective and antioxidant pathways.
Biochemical Pharmacology | 2003
Yen Chin Liu; Yi Ching Lo; Chin Wei Huang; Sheng Nan Wu
ICI-182,780 is known to be a selective inhibitor of the intracellular estrogen receptors. The effect of ICI-182,780 on ion currents was studied in cultured endothelial cells of human coronary artery. In whole-cell current recordings, ICI-182,780 reversibly decreased the amplitude of K(+) outward currents. The decrease in outward current caused by ICI-182,780 could be counteracted by further application of magnolol or nordihydroguaiaretic acid, yet not by 17beta-estradiol. Under current-clamp condition, ICI-182,780 (3microM) depolarized the membrane potentials of the cells, and magnolol (10 microM) or nordihydroguaiaretic acid (10 microM) reversed ICI-182,780-induced depolarization. In inside-out patches, ICI-182,780 added to the bath did not alter single-channel conductance of large-conductance Ca(2+)-activated K(+) channels (BK(Ca) channels), but decreased their open probability. ICI-182,780 reduced channel activity in a concentration-dependent manner with an IC(50) value of 3 microM. After BK(Ca) channel activity was suppressed by 2-methoxyestradiol (3 microM), subsequent application of ICI-182,780 (3 microM) did not further reduce the channel activity. The application of ICI-182,780 shifted the activation curve of BK(Ca) channels to positive potentials. Its decrease in the open probability primarily involved a reduction in channel open duration. ICI-182,780 also suppressed the proliferation of these endothelial cells with an IC(50) value of 2 microM. However, in coronary smooth muscle cells, a bell-shaped concentration-response curve for the ICI-182,780 effect on BK(Ca) channel activity was observed. This study provides evidence that ICI-182,780 can inhibit BK(Ca) channels in vascular endothelial cells in a mechanism unlikely to be linked to its anti-estrogen activity. The inhibitory effects on these channels may partly contribute to the underlying mechanisms by which ICI-182,780 affects endothelial function.
Acta Physiologica | 2012
Sheng Nan Wu; Chia-Chen Yeh; Hsien-Ching Huang; Edmund Cheung So; Yi Ching Lo
The electrical properties of Na+‐activated K+ current (IK(Na)) and its contribution to spike firing has not been characterized in motor neurons.
Evidence-based Complementary and Alternative Medicine | 2012
Sheng Nan Wu; Ming Chun Hsu; Yu Kai Liao; Fang Tzu Wu; Yuh Jyh Jong; Yi Ching Lo
Flupirtine (Flu), a triaminopyridine derivative, is a centrally acting, non-opiate analgesic agent. In this study, effects of Flu on K+ currents were explored in two types of motor neuron-like cells. Cell exposure to Flu decreased the amplitude of delayed rectifier K+ current (I K(DR)) with a concomitant raise in current inactivation in NSC-34 neuronal cells. The dissociation constant for Flu-mediated increase of I K(DR) inactivation rate was about 9.8 μM. Neither linopirdine (10 μM), NMDA (30 μM), nor gabazine (10 μM) reversed Flu-induced changes in I K(DR) inactivation. Addition of Flu shifted the inactivation curve of I K(DR) to a hyperpolarized potential. Cumulative inactivation for I K(DR) was elevated in the presence of this compound. Flu increased the amplitude of M-type K+ current (I K(M)) and produced a leftward shift in the activation curve of I K(M). In another neuronal cells (NG108-15), Flu reduced I K(DR) amplitude and enhanced the inactivation rate of I K(DR). The results suggest that Flu acts as an open-channel blocker of delayed-rectifier K+ channels in motor neurons. Flu-induced block of I K(DR) is unlinked to binding to NMDA or GABA receptors and the effects of this agent on K+ channels are not limited to its action on M-type K+ channels.
British Journal of Pharmacology | 2015
Yi Ching Lo; Yu Ting Tseng; Chi Ming Liu; Bin Nan Wu; Sheng Nan Wu
7‐[2‐[4‐(2‐Chlorophenyl)piperazinyl]ethyl]‐1,3‐dimethylxanthine (KMUP‐1) is a xanthine‐based derivative. It has soluble GC activation and K+‐channel opening activity. Effects of this compound on ion currents in pituitary GH3 cells were investigated in this study.
European Journal of Pharmacology | 2014
Edmund Cheung So; Yi Ching Lo; Li-Tzong Chen; Chin An Kao; Sheng Nan Wu
Triptolide (Trip), a diterpene triepoxide isolated from medicinal vine Trypterygium wilfordii Hook. F. possessed multiple biological activities including antineoplastic actions. However, no report concerning its effects on ion currents has been published. In this study, we attempted to determine whether this compound has any effects on ion currents in malignant glioma cells. The mRNA expression of KCNJ10 (Kir4.1) was detected in U373 glioma cells. The inwardly rectifying K(+) currents (IK(IR)) in U373 cells were almost fully blocked by BaCl2 (1mM). Trip (30 nM-10 μM) effectively decreased the amplitude of IK(IR) in a concentration-dependent manner with an IC50 value of 0.72 μM. In chlorotoxin-treated U373 cells, Trip-mediated block of IK(IR) remained effective. Addition of Trip (3 μM) slightly inhibited the amplitude of Ca(2+)-activated K(+) current and sustained K(+) outward current in U373 cells. In cell-attached configuration, when Trip was added to the bath, the activity of inwardly rectifying K(+) (Kir) channels diminished with no change in single-channel conductance. Its suppression of Kir channels was accompanied by a reduction in the slow component of mean open time. Under current-clamp conditions, addition of Trip depolarized the membrane along with changes in frequency histogram of resting potential. Block by this component of Kir4.1 channels may be an important mechanism underlying its actions on the functional activity of glioma cells. Targeting at Kir4.1 channels may be clinically useful as an adjunctive regimen to anti-cancer drugs.
Muscle & Nerve | 2012
Sheng Nan Wu; Yi Ching Lo; Bing Shuo Chen; Edmund Cheung So; Li-Tzong Chen
cause of this phenomenon remains unclear. Conduction block or axonal loss in the large myelinated fibers upon wrist compression, or retrograde axonal atrophy (RAA), have been suspected. The relationships between RAA and electrophysiological or clinical severity of the CTS are also unclear. We believe it would be helpful to look for possible median nerve atrophy with ultrasound in the subgroup of patients with clinical and electrophysiological signs of CTS who have decreased FMMCV. Possible RAA in these cases could explain the absence of CSA enlargement of the nerve in 30% of patients with CTS. More studies are necessary to confirm these results.
Toxicology | 2011
Sheng Nan Wu; Bing Shuo Chen; Yi Ching Lo
Aconitine (ACO) is a highly toxic diterpenoid alkaloid and known to exert the immunomodulatory action. However, whether it has any effects on ion currents in immune cells remains unknown. The effects of ACO and other related compounds on ion currents in Jurkat T-lymphocytes were investigated in this study. ACO suppressed the amplitude of delayed-rectifier K(+) current (I(K(DR))) in a time- and concentration-dependent manner. Margatoxin (100 nM), a specific blocker of K(V)1.3-encoded current, decreased the I(K(DR)) amplitude in these cells and the ACO-induced inhibition of I(K(DR)) was not reversed by 1-ethyl-2-benzimidazolinone (30 μM) or nicotine (10 μM). The IC(50) value for ACO-mediated inhibition of I(K(DR)) was 5.6 μM. ACO accelerated the inactivation of I(K(DR)) with no change in the activation rate of this current. Increasing the ACO concentration not only reduced the I(K(DR)) amplitude, but also accelerated the inactivation time course of the current. With the aid of minimal binding scheme, the inhibitory action of ACO on I(K(DR)) was estimated with a dissociation constant of 6.8 μM. ACO also shifted the inactivation curve of I(K(DR)) to a hyperpolarized potential with no change in the slope factor. Cumulative inactivation for I(K(DR)) was enhanced in the presence of ACO. In Jurkat cells incubated with amiloride (30 μM), the ACO-induced inhibition of I(K(DR)) remained unaltered. In RAW 264.7 murine macrophages, ACO did not modify the kinetics of I(K(DR)), although it suppressed I(K(DR)) amplitude. Taken together, these effects can significantly contribute to its action on functional activity of immune cells if similar results are found in vivo.
Chinese Journal of Physiology | 2011
Sheng Nan Wu; Yi Ching Lo; Ai Yu Shen; Bing Shuo Chen
The effects of chemical injury with oxidizing agents on voltage-gated Na+ current (I(Na)) in differentiated NG108-15 neuronal cells were investigated in this study. In whole-cell patch-clamp recordings, the challenge of these cells with t-butyl hydroperoxide (t-BHP; 1 mM) decreased the peak amplitude of I(Na) with no modification in the current-voltage relationship. It caused a slowing of current inactivation, although there was no alteration in the activation time course of I(Na). Cell exposure to t-BHP also increased a non-inactivating I(Na) (I(Na(NI)) elicited by long-lasting ramp pulses. The t-BHP-induced increase of I(Na(NI)) was reversed by a further application of riluzole (10 microM) or oxcarbazepine (10 microM). When I(Na) was elicited by simulated waveforms of action potentials (APs), during exposure to t-BHP, the amplitude of this inward current was diminished, accompanied by a reduction in inactivation/deactivation rate and an increase in current fluctuations. Under current-clamp recordings, addition of t-BHP (0.3 mM) enhanced AP firing in combination with clustering-like activity and sub-threshold membrane oscillations. In the simulation study, when the fraction of non-inactivating Na(v) channels was elevated, the simulated window component of I(Na) in response to a long-lasting ramp pulse was reduced; however, the persistent I(Na) was markedly enhanced. Moreover, when simulated firing of APs was generated from a modeled neuron, changes of AP firing caused by the increased fraction of non-inactivating Na(v) channels used to mimic the t-BHP actions were similar to the experimental observations. Taken together, it is anticipated that the effects of oxidizing agents on I(Na(NI)) could be an important mechanism underlying their neurotoxic actions in neurons or neuroendocrine cells occurring in vivo.
Toxicology Letters | 2018
Edmund Cheung So; Sheng Nan Wu; Yi Ching Lo; Kevin Su
Voltage-gated Na+ currents (INa), known to contain many components (e.g., transient, resurgent and persistent INa) with unique gating properties, are involved in the generation and propagation of action potentials in excitable cells. In this study, how tefluthrin (Tef), a synthetic pyrethoid, and telmisartan (TEL), blocker of angiotensin II receptors can perturb those components of INa was investigated. The presence of either Tef or TEL increased the values of the gating charges of INa involved in the activation (za) and inactivation (zi). Tef also increased the amplitude of resurgent INa (INa(R)) or persistent INa (INa(P)) in a pituitary cell line (GH3), while TEL produced minimal effects on them. Subsequent addition of either ranolazine (a blocker of late INa) or d-limonene (a monoterpene), could reverse the changes by TEL or Tef on za or zi. In SCN5A-expressing HEK293T cells, addition of Tef or TEL also increased the peak amplitude and the inactivation time constant of INa which was accompanied by the increased za value of INa. Taken together, the results indicated that Tef- or TEL-mediated changes in the gating kinetics of INa are linked to their actions on functional activity of neurons, neuroendocrine or endocrine cells.