Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yi-chun Chen is active.

Publication


Featured researches published by Yi-chun Chen.


Journal of Neurogenetics | 2009

The Wuerzburg hybridoma library against Drosophila brain.

Alois Hofbauer; Thomas Ebel; Bernhard Waltenspiel; Peter Oswald; Yi-chun Chen; Partho Halder; Saskia Biskup; Urs Lewandrowski; Christiane Winkler; Albert Sickmann; Sigrid Buchner; Erich Buchner

Abstract: This review describes the present state of a project to identify and characterize novel nervous system proteins by using monoclonal antibodies (mAbs) against the Drosophila brain. Some 1,000 hybridoma clones were generated by injection of homogenized Drosophila brains or heads into mice and fusion of their spleen cells with myeloma cells. Testing the mAbs secreted by these clones identified a library of about 200 mAbs, which selectively stain specific structures of the Drosophila brain. Using the approach “from antibody to gene”, several genes coding for novel proteins of the presynaptic terminal were cloned and characterized. These include the “cysteine string protein” gene (Csp, mAb ab49), the “synapse-associated protein of 47 kDa” gene (Sap47, mAbs nc46 and nb200), and the “Bruchpilot” gene (brp, mAb nc82). By a “candidate” approach, mAb nb33 was shown to recognize the pigment dispersing factor precursor protein. mAbs 3C11 and pok13 were raised against bacterially expressed Drosophila synapsin and calbindin-32, respectively, after the corresponding cDNAs had been isolated from an expression library by using antisera against mammalian proteins. Recently, it was shown that mAb aa2 binds the Drosophila homolog of “epidermal growth factor receptor pathway substrate clone 15” (Eps15). Identification of the targets of mAbs na21, ab52, and nb181 is presently attempted. Here, we review the available information on the function of these proteins and present staining patterns in the Drosophila brain for classes of mAbs that either bind differentially in the eye, in neuropil, in the cell-body layer, or in small subsets of neurons. The prospects of identifying the corresponding antigens by various approaches, including protein purification and mass spectrometry, are discussed.


The Journal of Experimental Biology | 2013

Olfactory memories are intensity specific in larval Drosophila

Dushyant Mishra; Yi-chun Chen; Ayse Yarali; Tuba Oguz; Bertram Gerber

SUMMARY Learning can rely on stimulus quality, stimulus intensity, or a combination of these. Regarding olfaction, the coding of odour quality is often proposed to be combinatorial along the olfactory pathway, and working hypotheses are available concerning short-term associative memory trace formation of odour quality. However, it is less clear how odour intensity is coded, and whether olfactory memory traces include information about the intensity of the learnt odour. Using odour–sugar associative conditioning in larval Drosophila, we first describe the dose–effect curves of learnability across odour intensities for four different odours (n-amyl acetate, 3-octanol, 1-octen-3-ol and benzaldehyde). We then chose odour intensities such that larvae were trained at an intermediate odour intensity, but were tested for retention with either that trained intermediate odour intensity, or with respectively higher or lower intensities. We observed a specificity of retention for the trained intensity for all four odours used. This adds to the appreciation of the richness in ‘content’ of olfactory short-term memory traces, even in a system as simple as larval Drosophila, and to define the demands on computational models of associative olfactory memory trace formation. We suggest two kinds of circuit architecture that have the potential to accommodate intensity learning, and discuss how they may be implemented in the insect brain.


Learning & Memory | 2016

Synapsin is required to “boost” memory strength for highly salient events

Jörg Kleber; Yi-chun Chen; Birgit Michels; Timo Saumweber; Michael Schleyer; Thilo Kähne; Erich Buchner; Bertram Gerber

Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the Drosophila genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function at the behavioral level. Task-relevant sensorimotor functions, however, remain intact in the absence of Synapsin. Using an odor-sugar reward associative learning paradigm in larval Drosophila, we show that memory scores in mutants lacking Synapsin (syn(97)) are lower than in wild-type animals only when more salient, higher concentrations of odor or of the sugar reward are used. Furthermore, we show that Synapsin is selectively required for larval short-term memory. Thus, without Synapsin Drosophila larvae can learn and remember, but Synapsin is required to form memories that match in strength to event salience-in particular to a high saliency of odors, of rewards, or the salient recency of an event. We further show that the residual memory scores upon a lack of Synapsin are not further decreased by an additional lack of the Sap47 protein. In combination with mass spectrometry data showing an up-regulated phosphorylation of Synapsin in the larval nervous system upon a lack of Sap47, this is suggestive of a functional interdependence of Synapsin and Sap47.


The Journal of Experimental Biology | 2017

The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 Drosophila larvae.

Maria J. Almeida-Carvalho; Dimitri Berh; Andreas Braun; Yi-chun Chen; Katharina Eichler; Claire Eschbach; Pauline Mj Fritsch; Bertram Gerber; Nina Hoyer; Xiaoyi Jiang; Jörg Kleber; Christian Klämbt; Christian König; Matthieu Louis; Birgit Michels; Anton Miroschnikow; Christen K. Mirth; Daisuke Miura; Thomas Niewalda; Nils Otto; Emmanouil Paisios; Michael J. Pankratz; Meike Petersen; Noel Ramsperger; Nadine Randel; Benjamin Risse; Timo Saumweber; Philipp Schlegel; Michael Schleyer; Peter Soba

ABSTRACT Mapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva – because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour–taste associative learning, as well as light/dark–electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages. Summary: A community-based survey of the behavioural faculties of stage 1 Drosophila larvae, providing a resource for relating these behavioural faculties to the upcoming connectome of their nervous system.


The Journal of Experimental Biology | 2014

Generalization and discrimination tasks yield concordant measures of perceived distance between odours and their binary mixtures in larval Drosophila.

Yi-chun Chen; Bertram Gerber

Similarity between odours is notoriously difficult to measure. Widely used behavioural approaches in insect olfaction research are cross-adaptation, masking, as well as associative tasks based on olfactory learning and the subsequent testing for how specific the established memory is. A concern with such memory-based approaches is that the learning process required to establish an odour memory may alter the way the odour is processed, such that measures of perception taken at the test are distorted. The present study was therefore designed to see whether behavioural judgements of perceptual distance are different for two different memory-based tasks, namely generalization and discrimination. We used odour–reward learning in larval Drosophila as a study case. In order to challenge the larvaes olfactory system, we chose to work with binary mixtures and their elements (1-octanol, n-amyl acetate, 3-octanol, benzaldehyde and hexyl acetate). We determined the perceptual distance between each mixture and its elements, first in a generalization task, and then in a discrimination task. It turns out that scores of perceptual distance are correlated between both tasks. A re-analysis of published studies looking at element-to-element perceptual distances in larval reward learning and in adult punishment learning confirms this result. We therefore suggest that across a given set of olfactory stimuli, associative training does not grossly alter the pattern of perceptual distances.


Frontiers in Behavioral Neuroscience | 2017

Pavlovian conditioning of larval drosophila: an illustrated, multilingual, hands-on manual for odor-taste associative learning in maggots

Birgit Michels; Timo Saumweber; Roland Biernacki; Jeanette Thum; Rupert D. V. Glasgow; Michael Schleyer; Yi-chun Chen; Claire Eschbach; Reinhard F. Stocker; Naoko Toshima; Teiichi Tanimura; Matthieu Louis; Gonzalo Arias-Gil; Manuela Marescotti; Fabio Benfenati; Bertram Gerber

Larval Drosophila offer a study case for behavioral neurogenetics that is simple enough to be experimentally tractable, yet complex enough to be worth the effort. We provide a detailed, hands-on manual for Pavlovian odor-reward learning in these animals. Given the versatility of Drosophila for genetic analyses, combined with the evolutionarily shared genetic heritage with humans, the paradigm has utility not only in behavioral neurogenetics and experimental psychology, but for translational biomedicine as well. Together with the upcoming total synaptic connectome of the Drosophila nervous system and the possibilities of single-cell-specific transgene expression, it offers enticing opportunities for research. Indeed, the paradigm has already been adopted by a number of labs and is robust enough to be used for teaching in classroom settings. This has given rise to a demand for a detailed, hands-on manual directed at newcomers and/or at laboratory novices, and this is what we here provide. The paradigm and the present manual have a unique set of features: The paradigm is cheap, easy, and robust; The manual is detailed enough for newcomers or laboratory novices; It briefly covers the essential scientific context; It includes sheets for scoring, data analysis, and display; It is multilingual: in addition to an English version we provide German, French, Japanese, Spanish and Italian language versions as well. The present manual can thus foster science education at an earlier age and enable research by a broader community than has been the case to date.


Nature Communications | 2018

Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila

Timo Saumweber; Astrid Rohwedder; Michael Schleyer; Katharina Eichler; Yi-chun Chen; Yoshinori Aso; Albert Cardona; Claire Eschbach; Oliver Kobler; Anne Voigt; Archana Durairaja; Nino Mancini; Marta Zlatic; James W. Truman; Andreas S. Thum; Bertram Gerber

The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.The mushroom body of Drosophila integrates sensory information with past experience to guide behaviour. Here, the authors provide an atlas of the input and output neurons of the stage 3 larval mushroom body at the single-cell level, and analyse their function in learned and innate behaviours.


PLOS ONE | 2011

Identification of Eps15 as antigen recognized by the monoclonal antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila brain.

Partho Halder; Yi-chun Chen; Janine Brauckhoff; Alois Hofbauer; Marie-Christine Dabauvalle; Urs Lewandrowski; Christiane Winkler; Albert Sickmann; Erich Buchner

The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies.


Frontiers in Psychology | 2017

Behavioral Evidence for Enhanced Processing of the Minor Component of Binary Odor Mixtures in Larval Drosophila

Yi-chun Chen; Dushyant Mishra; Sebastian Gläß; Bertram Gerber

A fundamental problem in deciding between mutually exclusive options is that the decision needs to be categorical although the properties of the options often differ but in grade. We developed an experimental handle to study this aspect of behavior organization. Larval Drosophila were trained such that in one set of animals odor A was rewarded, but odor B was not (A+/B), whereas a second set of animals was trained reciprocally (A/B+). We then measured the preference of the larvae either for A, or for B, or for “morphed” mixtures of A and B, that is for mixtures differing in the ratio of the two components. As expected, the larvae showed higher preference when only the previously rewarded odor was presented than when only the previously unrewarded odor was presented. For mixtures of A and B that differed in the ratio of the two components, the major component dominated preference behavior—but it dominated less than expected from a linear relationship between mixture ratio and preference behavior. This suggests that a minor component can have an enhanced impact in a mixture, relative to such a linear expectation. The current paradigm may prove useful in understanding how nervous systems generate discrete outputs in the face of inputs that differ only gradually.


Animal Behaviour | 2008

'Pain relief' learning in fruit flies

Ayse Yarali; Thomas Niewalda; Yi-chun Chen; Hiromu Tanimoto; Stefan Duerrnagel; Bertram Gerber

Collaboration


Dive into the Yi-chun Chen's collaboration.

Top Co-Authors

Avatar

Bertram Gerber

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Timo Saumweber

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Schleyer

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Eschbach

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Kleber

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge