Yi Chung Chien
National Chung Hsing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yi Chung Chien.
Journal of Ethnopharmacology | 2009
Ming Jyh Sheu; Pei Yu Chou; Hsu Chen Cheng; Chieh Hsi Wu; Guan-Jhong Huang; Bor Sen Wang; Jwo Sheng Chen; Yi Chung Chien; Ming Hsing Huang
AIMS OF THE STUDY This study investigated the analgesic and anti-inflammatory effects of a water extract of Trachelospermum jasminoides (WET) in ICR mice. MATERIALS AND METHODS In HPLC analysis, the fingerprint chromatogram of WET was established. Acetic acid-induced writhing response and formalin-induced pain were examined the analgesics effects of WET. WET on lambda-Carrageenan(carr)-induced paw edema was performed. We investigate the anti-inflammatory mechanism of WET via studies of the activities of glutathione peroxidase (GPx), glutathione reductase (GRx) in the liver and the levels of malondialdehyde (MDA) and nitrite oxide (NO) in the edema paw. Serum NO and TNF-alpha were also measured. RESULTS The fingerprint chromatogram of WET was established through HPLC analysis, and implies that WET contains the active ingredient gallic acid, chlorgenic acid, caffeic acid, taxifolin, isoquercitrin and quercetin. WET significantly inhibited the numbers of acetic acid-induced writhing responses and the formalin-induced pain in the late phase. In the anti-inflammatory test, WET inhibited the development of paw edema induced by carr. WET decreased the paw edema at the third, fourth and fifth hour after carr administration, and increased the activities of SOD, GPx and GRx in the liver tissue and decreased the MDA level in the edema paw at the third hour after carr injection. WET decreased the level of NO in edematous paw tissue and in serum level, and diminished the level of serum TNF-alpha at the fifth hour after carr injection. CONCLUSIONS These results demonstrated that WET is an effective anti-inflammatory agent in carr-induced inflammation. WET probably exerts anti-inflammatory effects by suppressing TNF-alpha and NO. The anti-inflammatory mechanism of WET might be related to the decrease in the level of MDA in the edema paw via increasing the activities of SOD, GPx and GRx in the liver.
Evidence-based Complementary and Alternative Medicine | 2012
Ying Yi Chen; Fon Chang Liu; Pei Yu Chou; Yi Chung Chien; Wun Shaing Wayne Chang; Guang Jhong Huang; Chieh Hsi Wu; Ming Jyh Sheu
Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea), a medicinal mushroom in Taiwan, has shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC) exerted a concentration-dependent inhibitory effect on migration and motility of the highly metastatic CL1-5 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activities of matrix metalloproteinase-(MMP-) 2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, that is, tissue inhibitors of MMP (TIMP-1 and TIMP-2) increased. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of Akt. Furthermore, treatment of CL1-5 cells with inhibitors specific for PI3K (LY 294002), ERK1/2 (PD98059), JNK (SP600125), and p38 MAPK (SB203580) decreased the expression of MMP-2 and MMP-9. This is the first paper confirming the antimigration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-5 cancer cells.
Phytomedicine | 2012
Ying Yi Chen; Pei Yu Chou; Yi Chung Chien; Chieh Hsi Wu; Tian Shung Wu; Ming Jyh Sheu
Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea), a medicinal mushroom in Taiwan, has been shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC) exerted a concentration-dependent inhibitory effect on migration and motility of CL1-0 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activity of matrix metalloproteinase (MMP)-2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, i.e., tissue inhibitors of MMP (TIMP-1 and TIMP-2) increased. Two major compounds from EEAC codycepin and zhankuic acid A alone and together inhibited MMP-9 and MMP-2 expressions. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of AKT. This is the first report confirming the anti-migration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-0.
Marine Drugs | 2013
Ming Jyh Sheu; Pei Yu Chou; Wen Hsin Lin; Chun Hsu Pan; Yi Chung Chien; Yun Lung Chung; Fon Chang Liu; Chieh Hsi Wu
Deep sea water (DSW), originally pumped from the Pacific Rim off the coast of Hualien County (Taiwan), and its mineral constituents, were concentrated by a low-temperature vacuum evaporation system to produce a hardness of approximately 400,000 mg/L of seawater mineral concentrate. The primary composition of this seawater mineral concentrate was ionic magnesium (Mg2+), which was approximately 96,000 mg/L. Referring to the human recommended daily allowance (RDA) of magnesium, we diluted the mineral concentrate to three different dosages: 0.1 × DSW (equivalent to 3.75 mg Mg2+/kg DSW); 1 × DSW (equivalent to 37.5 mg Mg2+/kg DSW); and 2 × DSW (equivalent to 75 mg Mg2+/kg DSW). Additionally, a magnesium chloride treatment was conducted for comparison with the DSW supplement. The study indicated that 0.1 × DSW, 1 × DSW and 2 × DSW decreased the systolic and diastolic pressures in spontaneous hypertensive rats in an eight-week experiment. DSW has been shown to reduce serum lipids and prevent atherogenesis in a hypercholesterolemic rabbit model. Our results demonstrated that 1 × DSW and 2 × DSW significantly suppressed the serum cholesterol levels, reduced the lipid accumulation in liver tissues, and limited aortic fatty streaks. These findings indicated that the antiatherogenic effects of DSW are associated with 5′-adenosine monophosphate-activated protein kinase (AMPK) stimulation and the consequent inhibition of phosphorylation of acetyl-CoA carboxylase (ACC) in atherosclerotic rabbits. We hypothesize that DSW could potentially be used as drinking water because it modulates blood pressure, reduces lipids, and prevents atherogenesis.
Molecular Nutrition & Food Research | 2013
Ming Jyh Sheu; Hui-Yi Lin; Yi Hsuan Yang; Chia Ju Chou; Yi Chung Chien; Tian Shung Wu; Chieh Hsi Wu
SCOPE Curcumin has been shown to affect platelet-derived growth factor (PDGF)- and tumor necrosis factor (TNF)-α-elicited vascular smooth muscle cell (VSMC) migration and inhibit neointima formation following vascular injury. However, whether two other curcuminoids isolated from Curcuma longa, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), also demonstrate antimigratory activity in VSMCs similar to that of curcumin remain uncharacterized. METHODS AND RESULTS Based on 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and proliferating cell nuclear antigen immunostaining analyses as well as changes in intima/media ratios, we show that DMC exhibits more potent effects than the other curcuminoids. We aimed to evaluate the effects and characterize the molecular mechanisms of DMC on VSMC migration and neointima formation in a carotid injury model. DMC decreased the expression of matrix metalloproteinase 2/9 and inhibited VSMC migration as demonstrated by in vitro scratch wound and transwell assays. Furthermore, DMC may inhibit the migration of VSMCs by reducing the expression of matrix metalloproteinase 2/9 via downregulation of the focal adhesion kinase/phosphatidylinositol 3-kinase (PI3K)/AKT (protein kinase B) and phosphoglycerate kinase 1/extracellular signal regulated kinase 1/2 signaling pathways. Using a rat carotid arterial injury model, we show that DMC treatment was more potent than treatment with the other curcuminoids with respect to reducing intima/media ratios and the number of proliferating cells. CONCLUSION DMC should be considered for therapeutic use in preventing VSMC migration and attenuating restenosis following balloon-mediated vascular injury.
The American Journal of Chinese Medicine | 2011
Pei Yu Chou; Guan-Jhong Huang; Chun Hsu Pan; Yi Chung Chien; Ying Yi Chen; Chieh Hsi Wu; Ming Jyh Sheu; Hsu Chen Cheng
Trilinolein has been identified as one of the active constituents isolated from Panax notoginseng used widely in traditional Chinese medicine. Protective actions of Panax notoginseng against cerebral ischemia, beneficial effects on the cardiovascular system, and hemostatic, antioxidant, hypolipidemic, hepatoprotective, renoprotective and estrogen-like activities have been illustrated. In the present study, the effects of trilinolein on the growth of non-small cell lung carcinoma A549 were investigated. It was found that the exposure of A549 cells to trilinolein resulted in the growth inhibition and the induction of apoptosis in a dose- and time- dependent manner. Trilinolein treatment induced the upregulation of pro-apoptotic Bax, downregulation of anti-apoptotic Bcl-2 expression, which was associated with the proteolytic activation of caspases and the concomitant degradation of poly(ADP-ribose) polymerase (PARP) protein. Intracellular reactive oxygen species seem to play a role in the trilinolein-induced apoptosis, since ROS were produced early in the trilinolein treatment. Moreover, the activity of PI3K/Akt was downregulated in trilinolein-treated cells. Our results demonstrated that the most important regulators of trilinolein-induced apoptosis are Bcl-2 family and caspase-3, which are associated with cytochrome c release and dephosphorylation on the Akt signaling pathway.
Marine Drugs | 2014
Shuo-Chueh Chen; Yi Chung Chien; Chun Hsu Pan; Jyh-Horng Sheu; Chih-Yi Chen; Chieh Hsi Wu
There are many major causes of cancer death, including metastasis of cancer. Dihydroaustrasulfone alcohol, which is isolated from marine coral, has shown antioxidant activity, but has not been reported to have an anti-cancer effect. We first discovered that dihydroaustrasulfone alcohol provided a concentration-dependent inhibitory effect on the migration and motility of human non-small cell lung carcinoma (NSCLC) A549 cells by trans-well and wound healing assays. The results of a zymography assay and Western blot showed that dihydroaustrasulfone alcohol suppressed the activities and protein expression of matrix metalloproteinase (MMP)-2 and MMP-9. Further investigation revealed that dihydroaustrasulfone alcohol suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. Dihydroaustrasulfone alcohol also suppressed the expression of PI3K and the phosphorylation of Akt. Furthermore, dihydroaustrasulfone alcohol markedly inhibited tumor growth in Lewis lung cancer (LLC)-bearing mice. We concluded that dihydroaustrasulfone alcohol is a new pure compound with anti-migration and anti-tumor growth activity in lung cancer and might be applied to clinical treatment in the future.
BMC Complementary and Alternative Medicine | 2012
Yi Chung Chien; Ming Jyh Sheu; Chieh Hsi Wu; Wen Hsin Lin; Ying Yi Chen; Po Liang Cheng; Hsu Chen Cheng
BackgroundThis study was to explore the effects of Gan-Lu-Yin (GLY) on the migration of vascular smooth muscle cells (VSMCs) induced by fetal bovine serum and on neointima formation in a rat model of carotid artery balloon injury.MethodsVSMCs were treated with different concentrations of GLY, and then analyzed with Flow cytometric analysis, zymography, transwell, and western blotting. SD rats received balloon-injury were analyzed with H&E staining.ResultsOur results showed that GLY significantly decreased the thickness of neointima. The inhibition by non-cytoxic doses of GLY of VSMCs migration was through its negative regulatory effects on phosphorylated ERK1/2, PI3K/AKT, and FAK. The data showed that GLY can inhibit the migration of VSMCs cells, and might block injury-induced neointima hyperplasia via the inhibition of VSMCs migration, without inducing apoptosis.ConclusionsThese observations provide a mechanism of GLY in attenuating cell migration, thus as a potential intervention for restenosis.
Toxicology and Applied Pharmacology | 2015
Chun Hsu Pan; Wen-Hsin Lin; Yi Chung Chien; Fon Chang Liu; Ming Jyh Sheu; Yueh-Hsiung Kuo; Chieh Hsi Wu
Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G2/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs).
Phytotherapy Research | 2018
Chun Hsu Pan; Pei Chuan Li; Yi Chung Chien; Wan Ting Yeh; Chih-Chuang Liaw; Ming Jyh Sheu; Chieh Hsi Wu
Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell‐cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound‐healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty‐induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell‐cycle arrest at the G0/G1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3‐kinase, v‐akt murine thymoma viral oncogene homolog 1, and extracellular signal‐regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase‐2 and matrix metalloproteinase‐9. In vivo data indicated that ugonin J prevented balloon angioplasty‐induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury‐induced neointimal formation.