Yi Han
Nanjing Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yi Han.
British Journal of Pharmacology | 2013
Zhen Liu; Yi Han; Ling Li; Hui Lu; Guoliang Meng; Xiaozhen Li; Mohammed Shirhan; Meng Teng Peh; Liping Xie; Suming Zhou; Xiaowei Wang; Qi Chen; Weilu Dai; Choon-Hong Tan; Shiyang Pan; Philip K. Moore; Yong Ji
Atherosclerosis is associated with reduced vascular hydrogen sulfide (H2S) biosynthesis. GYY4137 is a novel slow‐releasing H2S compound that may effectively mimic the time course of H2S release in vivo. However, it is not known whether GYY4137 affects atherosclerosis.
Diabetes | 2016
Liping Xie; Yue Gu; Mingliang Wen; Shuang Zhao; Wan Wang; Yan Ma; Guoliang Meng; Yi Han; Yuhui Wang; George Liu; Philip K. Moore; Xin Wang; Hong Wang; Zhiren Zhang; Ying Yu; Albert Ferro; Zhengrong Huang; Yong Ji
Hydrogen sulfide (H2S) has been shown to have powerful antioxidative and anti-inflammatory properties that can regulate multiple cardiovascular functions. However, its precise role in diabetes-accelerated atherosclerosis remains unclear. We report here that H2S reduced aortic atherosclerotic plaque formation with reduction in superoxide (O2−) generation and the adhesion molecules in streptozotocin (STZ)-induced LDLr−/− mice but not in LDLr−/−Nrf2−/− mice. In vitro, H2S inhibited foam cell formation, decreased O2− generation, and increased nuclear factor erythroid 2–related factor 2 (Nrf2) nuclear translocation and consequently heme oxygenase 1 (HO-1) expression upregulation in high glucose (HG) plus oxidized LDL (ox-LDL)–treated primary peritoneal macrophages from wild-type but not Nrf2−/− mice. H2S also decreased O2− and adhesion molecule levels and increased Nrf2 nuclear translocation and HO-1 expression, which were suppressed by Nrf2 knockdown in HG/ox-LDL–treated endothelial cells. H2S increased S-sulfhydration of Keap1, induced Nrf2 dissociation from Keap1, enhanced Nrf2 nuclear translocation, and inhibited O2− generation, which were abrogated after Keap1 mutated at Cys151, but not Cys273, in endothelial cells. Collectively, H2S attenuates diabetes-accelerated atherosclerosis, which may be related to inhibition of oxidative stress via Keap1 sulfhydrylation at Cys151 to activate Nrf2 signaling. This may provide a novel therapeutic target to prevent atherosclerosis in the context of diabetes.
Antioxidants & Redox Signaling | 2016
Liping Xie; Haihua Feng; Sha Li; Guoliang Meng; Shangmin Liu; Xin Tang; Yan Ma; Yi Han; Yujiao Xiao; Yue Gu; Yongfeng Shao; Chung Min Park; Ming Xian; Yu Huang; Albert Ferro; Rui Wang; Philip K. Moore; Hong Wang; Yong Ji
AIM Oxidative stress is a key contributor to endothelial dysfunction and associated cardiovascular pathogenesis. Hydrogen sulfide (H2S) is an antioxidant gasotransmitter that protects endothelial cells against oxidative stress. Sirtuin3 (SIRT3), which belongs to the silent information regulator 2 (SIR2) family, is an important deacetylase under oxidative stress. H2S is able to regulate the activity of several sirtuins. The present study aims to investigate the role of SIRT3 in the antioxidant effect of H2S in endothelial cells. RESULTS Cultured EA.hy926 endothelial cells were exposed to hydrogen peroxide (H2O2) as a model of oxidative stress-induced cell injury. GYY4137, a slow-releasing H2S donor, improved cell viability, reduced oxidative stress and apoptosis, and improved mitochondrial function following H2O2 treatment. H2S reversed the stimulation of MAPK phosphorylation, downregulation of SIRT3 mRNA and reduction of the superoxide dismutase 2 and isocitrate dehydrogenase 2 expression which were induced by H2O2. H2S also increased activator protein 1 (AP-1) binding activity with SIRT3 promoter and this effect was absent in the presence of the specific AP-1 inhibitor, SR11302 or curcumin. Paraquat administration to mice induced a defected endothelium-dependent aortic vasodilatation and increased oxidative stress in both mouse aorta and small mesenteric artery, which were alleviated by GYY4137 treatment. This vasoprotective effect of H2S was absent in SIRT3 knockout mice. INNOVATION The present results highlight a novel role for SIRT3 in the protective effect of H2S against oxidant damage in the endothelium both in vitro and in vivo. CONCLUSION H2S enhances AP-1 binding activity with the SIRT3 promoter, thereby upregulating SIRT3 expression and ultimately reducing oxidant-provoked vascular endothelial dysfunction. Antioxid. Redox Signal. 24, 329-343.
PLOS ONE | 2013
Lei Gu; Wenli Bai; Sha Li; Yuqing Zhang; Yi Han; Yue Gu; Guoliang Meng; Liping Xie; Jing Wang; Yujiao Xiao; Liyang Shan; Suming Zhou; Lei Wei; Albert Ferro; Yong Ji
Celastrol is a triterpenoid compound extracted from the Chinese herb Tripterygium wilfordii Hook F. Previous research has revealed its anti-oxidant, anti-inflammatory, anti-cancer and immunosuppressive properties. Here, we investigated whether celastrol inhibits oxidized low-density lipoprotein (oxLDL) induced oxidative stress in RAW 264.7 cells. In addition, the effect of celastrol on atherosclerosis in vivo was assessed in apolipoprotein E knockout (apoE−/−) mouse fed a high-fat/high-cholesterol diet (HFC). We found that celastrol significantly attenuated oxLDL-induced excessive expression of lectin-like oxidized low density lipoprotein receptor-1(LOX-1) and generation of reactive oxygen species (ROS) in cultured RAW264.7 macrophages. Celastrol also decreased IκB phosphorylation and degradation and reduced production of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and proinflammatory cytokines such as tumor necrosis factor (TNF)-α and IL-6. Celastrol reduced atherosclerotic plaque size in apoE−/− mice. The expression of LOX-1 within the atherosclerotic lesions and generation of superoxide in mouse aorta were also significantly reduced by celastrol while the lipid profile was not improved. In conclusion, our results show that celastrol inhibits atherosclerotic plaque developing in apoE−/− mice via inhibiting LOX-1 and oxidative stress.
Molecular Medicine Reports | 2011
Guo-Fan Cao; Meirong Chen; Qinglu Song; Yuan Liu; Liping Xie; Yi Han; Zhen Liu; Yong Ji; Qin Jiang
Ultraviolet B (UVB) radiation is part of the spectrum of light produced by the sun. This form of radiation has been implicated as one of the potential etiological factors causing age-related macular degeneration (AMD). Oxidative injury to the retinal pigment epithelium (RPE) has also been thought to play a key role in AMD. The aim of the present study was to determine the mechanism by which UVB causes damage to the RPE cells, whether it occurs through oxidative stress and the mitogen-activated protein kinase (MAPK) pathway and whether the green tea extract, (-)-epigallocatechin gallate (EGCG), has a protective role. Cell viability assays were used to determine the viability of the cells under different conditions. Cell death caused by apoptosis was determined using fluorescein isothiocyanate conjugated-annexin V/PI labeling, followed by flow cytometry. Intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Western blot analysis was used to detect UVB-induced MAPK signaling pathways. The findings showed that UVB induced apoptosis, which increased intracellular ROS in ARPE19 cells. Inhibition of c-Jun NH2-terminal kinase (JNK) with a specific inhibitor augmented this apoptosis, and anisomycin (an activator of JNK) attenuated this apoptosis. In addition, UVB decreased the phosphorylation of JNK1 and c-Jun. Finally, EGCG reduced the ROS generation and apoptosis, and also partially blocked the decreased phosphorylation of JNK1 and c-Jun by UVB irradiation. The findings show that UVB irradiation is able to induce apoptosis in ARPE19 cells through oxidative stress, but EGCG treatment attenuates this damage. In this situation, the JNK pathway plays an anti-apoptotic role. The use of selective activators or antioxidants may be useful in reducing the oxidative damage occurring in AMD.
Journal of the American Heart Association | 2014
Wen Zhang; Yi Han; Guoliang Meng; Wenli Bai; Liping Xie; Hui Lu; Yongfeng Shao; Lei Wei; Shiyang Pan; Suming Zhou; Qi Chen; Albert Ferro; Yong Ji
Background We tested the hypothesis that direct renin inhibition with aliskiren protects against myocardial ischemia/reperfusion (I/R) injury in spontaneously hypertensive rats (SHR), and examined the mechanism by which this occurs. Methods and Results Male SHR were treated (orally, 4 weeks) with saline or aliskiren (30 or 60 mg kg−1 day−1) and subjected to 30 minutes of left anterior descending coronary artery occlusion followed by 6 or 24 hours of reperfusion. Only the higher dose significantly lowered systolic blood pressure, the lower dose causing a smaller apparent lowering that was nonsignificant. Despite this difference in blood pressure‐lowering effect, both doses increased the ejection fraction and fractional shortening and reduced myocardial infarct size equally. I/R decreased cardiac expression of phosphatidylinositol 3‐kinase (PI3K), phospho‐Akt and phospho‐endothelial nitric oxide synthase (phospho‐eNOS), but increased expression of inducible nitric oxide synthase (iNOS); these changes were all abrogated by aliskiren. Moreover, aliskiren decreased superoxide anion generation and increased cyclic guanosine‐3′,5′‐monophosphate, an index of bioactive nitric oxide, in myocardium. It also decreased the expression of myocardial matrix metalloproteinase‐2, matrix metalloproteinase‐9, and tissue inhibitor of metalloproteinases‐1 (TIMP‐1) following I/R. In a Langendorff heart preparation, the detrimental cardiac effects of I/R were abrogated by aliskiren, and these protective effects were abolished by NOS or PI3K inhibition. In a parallel study, although specific iNOS inhibition reduced plasma malondialdehyde and myocardial superoxide anion generation, it did not affect the deleterious effects of I/R on myocardial structure and function. Conclusions Direct renin inhibition protects against myocardial I/R injury through activation of the PI3K‐Akt‐eNOS pathway.
PLOS ONE | 2012
Yi Han; Wen Zhang; Yan Tang; Wenli Bai; Fan Yang; Liping Xie; Xiaozhen Li; Suming Zhou; Shiyang Pan; Qi Chen; Albert Ferro; Yong Ji
l-Tetrahydropalmatine (l-THP) is an active ingredients of Corydalis yanhusuo W.T. Wang, which protects against acute global cerebral ischaemia-reperfusion injury. In this study, we show that l-THP is cardioprotective in myocardial ischaemia-reperfusion injury and examined the mechanism. Rats were treated with l-THP (0, 10, 20, 40 mg/kg b.w.) for 20 min before occlusion of the left anterior descending coronary artery and subjected to myocardial ischaemia-reperfusion (30 min/6 h). Compared with vehicle-treated animals, the infarct area/risk area (IA/RA) of l-THP (20, 40 mg/kg b.w.) treated rats was reduced, whilst l-THP (10 mg/kg b.w.) had no significant effect. Cardiac function was improved in l-THP-treated rats whilst plasma creatine kinase activity declined. Following treatment with l-THP (20 mg/kg b.w.), subunit of phosphatidylinositol 3-kinase p85, serine473 phosphorylation of Akt and serine1177 phosphorylation of endothelial NO synthase (eNOS) increased in myocardium, whilst expression of inducible NO synthase (iNOS) decreased. However, the expression of HIF-1α and VEGF were increased in I30 minR6 h, but decreased to normal level in I30 minR24 h, while treatment with l-THP (20 mg/kg b.w.) enhanced the levels of these two genes in I30 minR24 h. Production of NO in myocardium and plasma, activity of myeloperoxidase (MPO) in plasma and the expression of tumour necrosis factor-α (TNF-α) in myocardium were decreased by l-THP. TUNEL assay revealed that l-THP (20 mg/kg b.w.) reduced apoptosis in myocardium. Thus, we show that l-THP activates the PI3K/Akt/eNOS/NO pathway and increases expression of HIF-1α and VEGF, whilst depressing iNOS-derived NO production in myocardium. This effect may decrease the accumulation of inflammatory factors, including TNF-α and MPO, and lessen the extent of apoptosis, therefore contributing to the cardioprotective effects of l-THP in myocardial ischaemia-reperfusion injury.
Journal of the American Heart Association | 2016
Guoliang Meng; Yujiao Xiao; Yan Ma; Xin Tang; Liping Xie; Jieqiong Liu; Yue Gu; Ying Yu; Chung‐Min Park; Ming Xian; Xin Wang; Albert Ferro; Rui Wang; Philip K. Moore; Zhiren Zhang; Hong Wang; Yi Han; Yong Ji
Background Hydrogen sulfide (H2S) is a gasotransmitter that regulates multiple cardiovascular functions. Krüppel‐like factor 5 (KLF5) exerts diverse functions in the cardiovascular system. Whether and how H2S regulates KLF5 in myocardial hypertrophy is unknown. Methods and Results In our study, hypertrophic myocardial samples in the clinic were collected and underwent histological and molecular biological analysis. Spontaneously hypertensive rats and neonatal rat cardiomyocytes were studied for functional and signaling responses to GYY4137, an H2S‐releasing compound. Expression of cystathionine γ‐lyase, a principal enzyme for H2S generation in heart, decreased in human hypertrophic myocardium, whereas KLF5 expression increased. After GYY4137 administration for 4 weeks, myocardial hypertrophy was inhibited in spontaneously hypertensive rats, as demonstrated by improvement in cardiac structural parameters, heart mass, size of cardiac myocytes, and expression of atrial natriuretic peptide. H2S diminished expression of KLF5 in myocardium of spontaneously hypertensive rats and in hypertrophic cardiomyocytes. H2S also inhibits platelet‐derived growth factor A promoter activity, decreased recruitment of KLF5 to the platelet‐derived growth factor A promoter, and reduced atrial natriuretic peptide expression in angiotensin II–stimulated cardiomyocytes, and these effects are suppressed by KLF5 knockdown. KLF5 promoter activity and KLF5 expression was also reversed by H2S. H2S increased the S‐sulfhydration on specificity protein 1 in cardiomyocytes. Moreover, H2S decreased KLF5 promoter activity; reduced KLF5 mRNA expression; attenuated specificity protein 1 binding activity with KLF5 promoter; and inhibited hypertrophy after specificity protein 1 mutated at Cys659, Cys689, and Cys692 but not Cys664 overexpression. Conclusions These findings suggest that H2S regulates KLF5 transcription activity via specificity protein 1 S‐sulfhydration at Cys664 to prevent myocardial hypertrophy.
PLOS ONE | 2012
Yi Han; Xiaozhen Li; Suming Zhou; Guoliang Meng; Yujiao Xiao; Wen Zhang; Zhuoying Wang; Liping Xie; Zhen Liu; Hui Lu; Yong Ji
Previous studies indicated that estrogen could improve endothelial function. However, whether estrogen protects vascular complications of diabetes has yet to be clarified. The study was designed to investigate the action of 17ß-estradiol on vascular endothelium in streptozotocin (STZ)-induced diabetic rats. Ovariectomized female Sprague-Dawley rats were administered with streptozotocin to produce an ovariectomized-diabetic (OVS) model which manifested as dysfunction of aortic dilation and contraction ability. Meanwhile, OVS animals with 17ß-estradiol supplementation significantly improved aortic function. Accordingly, nitric oxide synthase-3 (NOS-3), Akt, PI3K and estrogen receptor α (ERα) protein expression in aorta declined in the OVS group. Such effects were partially restored by estrogen replacement. The presence of 17ß-estradiol similarly counteracted the reduction of cyclic guanosine monophosphate (cGMP), the enhanced expression of inducible NOS (NOS-2) and NO metabolites (nitrite and nitrate), as well as the increase of matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 (MMP-9/TIMP-1), which is an index of arterial compliance. 17ß-estradiol could also decrease ROS production in vascular endothelium. In EA hy 926 cells we found that ER antagonist, wortmannin and Akt inhibitor could block improvement effects of 17ß-estradiol. These results strongly suggest that functional impairment of the ERα/NOS-3 signaling network in OVS animals was partially restored by 17ß-estradiol administration, which provides experimental support for estrogen recruitment to improve vascular outcomes in female diabetes after endogenous hormone depletion.
British Journal of Pharmacology | 2003
Yong Ji; Yi Han; Jianxin Diao; Yan Huang; Qi Chen; Albert Ferro
We investigated the relative effectiveness of L‐arginine, L‐ascorbate and pyridoxine in preventing the impairment of endothelium‐mediated vasorelaxation induced by native low‐density lipoprotein (nLDL) from healthy subjects, oxidised LDL (oxLDL, formed by oxidation of nLDL) or nLDL from type II diabetic patients (dLDL). Rabbit aortic rings were exposed to nLDL, dLDL or oxLDL (50–200 mg protein l−1), or corresponding vehicle, following which they were constricted with noradrenaline 10−6 M; concentration–relaxation curves were determined to acetylcholine (ACh), A23187, or sodium nitroprusside (NP), in the absence or presence of L‐arginine (10−5–10−3 M), L‐ascorbate (10−5–10−3 M) and pyridoxine (0.5–2.0 mM). nLDL, dLDL and oxLDL all inhibited relaxant responses to ACh and A23187, but not to NP, in a concentration‐dependent manner (oxLDL>dLDL>nLDL). In the presence of all LDL preparations, L‐arginine, L‐ascorbate or pyridoxine each improved ACh and A23187 responses, although none completely normalised endothelium‐dependent relaxations. The maximal effect of L‐arginine occurred at 10−4 M. The combination of L‐arginine 10−4 M, L‐ascorbate 10−5 M and pyridoxine 2.0 mM was equally effective as L‐arginine 10−4 M alone. Our results confirm that nLDL, dLDL and oxLDL exert inhibitory effects on endothelium dependent, but not endothelium independent, relaxation of rabbit aorta. ACh and A23187 responses in the presence of any LDL species can be ameliorated by supplementation with L‐arginine, L‐ascorbate or pyridoxine, either singly or in combination, with no agent or combination proving superior to L‐arginine alone. Nevertheless, ACh and A23187 responses are not completely normalised with such supplements, suggesting that there also exists a component of LDL‐induced inhibition of endothelium‐mediated vasorelaxation that is independent of the nitric oxide system.