Yi-Huan Xu
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yi-Huan Xu.
Scientific Reports | 2016
Kun Wu; Chao Huang; Xi Shi; Feng Chen; Yi-Huan Xu; Ya-Xiong Pan; Zhi Luo; Xu Liu
Previous studies have investigated the physiological responses in the liver of Synechogobius hasta exposed to waterborne zinc (Zn). However, at present, very little is known about the underlying molecular mechanisms of these responses. In this study, RNA sequencing (RNA-seq) was performed to analyse the differences in the hepatic transcriptomes between control and Zn-exposed S. hasta. A total of 36,339 unigenes and 1,615 bp of unigene N50 were detected. These genes were further annotated to the Nonredundant protein (NR), Nonredundant nucleotide (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. After 60 days of Zn exposure, 708 and 237 genes were significantly up- and down-regulated, respectively. Many differentially expressed genes (DEGs) involved in energy metabolic pathways were identified, and their expression profiles suggested increased catabolic processes and reduced biosynthetic processes. These changes indicated that waterborne Zn exposure increased the energy production and requirement, which was related to the activation of the AMPK signalling pathway. Furthermore, using the primary hepatocytes of S. hasta, we identified the role of the AMPK signalling pathway in Zn-influenced energy metabolism.
General and Comparative Endocrinology | 2016
Kun Wu; Xiao-Ying Tan; Yi-Huan Xu; Qi-Liang Chen; Ya-Xiong Pan
The present study clones and characterizes the full-length cDNA sequences of members in JAK-STAT pathway, explores their mRNA tissue expression and the biological role in leptin influencing lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Full-length cDNA sequences of five JAKs and seven STAT members, including some splicing variants, were obtained from yellow catfish. Compared to mammals, more members of the JAKs and STATs family were found in yellow catfish, which provided evidence that the JAK and STAT family members had arisen by the whole genome duplications during vertebrate evolution. All of these members were widely expressed across the eleven tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, testis and ovary) but at the variable levels. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin changed triglyceride content and mRNA expression of several JAKs and STATs members, and genes involved in lipid metabolism. AG490, a specific inhibitor of JAK2-STAT pathway, partially reversed leptin-induced effects, indicating that the JAK2a/b-STAT3 pathway exerts main regulating actions of leptin on lipid metabolism at transcriptional level. Meanwhile, the different splicing variants were differentially regulated by leptin incubation. Thus, our data suggest that leptin activated the JAK/STAT pathway and increases the expression of target genes, which partially accounts for the leptin-induced changes in lipid metabolism in yellow catfish.
G3: Genes, Genomes, Genetics | 2015
Yu-Feng Song; Zhi Luo; Chao Huang; Qi-Liang Chen; Ya–Xiong Pan; Yi-Huan Xu
Two endoplasmic reticulum (ER) molecular chaperones [glucose-regulated protein 78 (grp78) and calreticulin (crt)] and three ER stress sensors [PKR-like ER kinase (perk), inositol requiring enzyme (ire)-1α, and activating transcription factor (atf)-6α] cDNAs were first characterized from yellow catfish, Pelteobagrus fulvidraco. The predicted amino acid sequences for the yellow catfish grp78, crt, perk, ire-1α, and atf-6α revealed that the proteins contained all of the structural features that were characteristic of the five genes in other species, including the KDEL motif, signal peptide, sensor domain, and effector domain. mRNAs of the five genes mentioned above were expressed in various tissues, but their mRNA levels varied among tissues. Dietary Cu excess, but not Cu deficiency, activated the chaperones (grp78 and crt) and folding sensors in ER, and the UPR signaling pathways (i.e., perk–eif2α and the ire1–xbp1) in a tissue-specific manner. For the first time, our study cloned grp78, crt, perk, ire-1α, and atf-6α genes in yellow catfish and demonstrated their differential expression among tissues. Moreover, the present study also indicated differential regulation of these ER stress–related genes by dietary Cu deficiency and excess, which will be beneficial for us to evaluate effects of dietary Cu levels in fish at the molecular level, based on the upstream pathway of lipid metabolism (the ER) and thus provide novel insights regarding the nutrition of Cu in fish.
General and Comparative Endocrinology | 2016
Ya-Xiong Pan; Zhi Luo; Kun Wu; Li-Han Zhang; Yi-Huan Xu; Qi-Liang Chen
Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and mediate development, reproduction, homeostasis and cell differentiation processes in vertebrates. In this study, full-length cDNA sequences of five rxr subtypes from yellow catfish Pelteobagrus fulvidraco were cloned. Their mRNA expression patterns in different tissues and transcriptional regulation by insulin were determined. Five P. fulvidraco rxr (Pf-rxr) subtypes differed in the length of cDNA sequence and the open reading frame, but shared the similar domain structures as in typical nuclear receptors. Phylogenetic analysis revealed that the five Pf-rxr subtypes were paralogous genes, and that Pf-rxrβa and Pf-rxrβb had arisen during a teleost-specific genome duplication event. Five subtypes of Pf-rxr were detected in all the tested tissues. Overlapping and distinct expression patterns were found for different Pf-rxr subtypes, suggesting functional redundancy and divergence of these duplicates. Intraperitoneal insulin injection and incubation reduced the mRNA expression of Pf-rxrgb, but not other subtypes, in the liver and hepatocytes of P. fulvidraco, respectively, suggesting that Pf-rxrgb is the dominant rxr subtype involved in the insulin signaling pathway in P. fulvidraco.
Comparative Biochemistry and Physiology B | 2016
Ya-Xiong Pan; Zhi Luo; Mei-Qin Zhuo; Wei Hu; Kun Wu; Xi Shi; Yi-Huan Xu
Liver X Receptor (LXR) plays a pivotal role in metabolic regulation in mammals, but little is known about its function in fish. In this study, two lxra isoforms, namely lxra1 and lxra2, were isolated. Their molecular characterization, tissues distribution and transcriptional regulation by insulin in vivo and in vitro were determined. lxrα1 and lxrα2 cDNA covered 2775bp and 3093bp, encoding 446 and 515 amino acid residues, respectively. The protein sequence of yellow catfish lxra included characteristic feature of mammalian lxrs, including the DNA binding (DBD) (containing P-box), ligand binding (LBD) and activation function-2 (AF-2) domains, D-box, and D (hinge) region. Phylogenetic analysis revealed that yellow catfish lxra grouped with lxra of zebrafish but was distant from those of medaka and stickleback. lxrβ clades was absent in teleosts in phylogenetic tree, proving gene loss of lxrβ in teleosts during evolution. The two lxra isoforms (lxra1 and lxra2) mRNAs were ubiquitously expressed in 11 tested tissues. Compared to lxra2, lxra1 mRNA expression was predominant in all tested tissues. The expression of lxrα1 was the highest in testis, then in liver, and the lowest in other tissues. lxrα2 expression was the highest in liver, then in testis, and the lowest in ovary. Insulin significantly stimulated the mRNA expression of lxra1 in vitro and in vivo, while the expression of lxra2 remained unchanged after insulin treatment. The present study serves to increase our understanding into the function of lxra in fish.
Aquatic Toxicology | 2016
Li-Han Zhang; Zhi Luo; Yu-Feng Song; Xi Shi; Ya-Xiong Pan; Yao-Fang Fan; Yi-Huan Xu
The present study was conducted to determine the effects and mechanism of waterborne copper (Cu) exposure influencing ovary development and related hormones secretion in yellow catfish Pelteobagrus fulvidraco. To this end, two experiments were conducted. In Exp. 1, the partial cDNA sequences of three steroidogenesis-related genes (androgen receptor (ar), steroidogenic factor 1 (sf-1) and steroidogenic acute regulatory protein (star)) were firstly characterized from P. fulvidraco. The predicted amino acid sequences for the P. fulvidraco ar, sf-1 and star contained the main structural features characteristic in other species. In Exp. 2, P. fulvidraco were exposed to three waterborne Cu concentrations (control, 30μg/l and 60μg/l, respectively) for 56days. Sampling occurred on day 28 and day 56, respectively. On day 28, the levels of serum sex-steroid hormones (FSH and LH) and the mRNA levels of steroidogenesis-related genes (3β-hsd, cyp11a1, cyp17, cyp19a, sf-1 and star) were significantly increased in ovary of P. fulvidraco exposed to 30μg Cu/l. The immunohistochemical analysis showed the positive reaction of ER, VTG and aromatase in low dose exposure group. These indicated that in low dose and relative short-term exposure, Cu was beneficial. In contrast, 60μg Cu/l exposure significantly reduced the levels of serum FSH, LH, E2 and P, and the mRNA levels of ovarian 20β-hsd, cyp19a and erα in P. fulvidraco. On day 56, waterborne Cu concentration exposure reduced the levels of serum gonadotropins and sex hormones, and down-regulated the mRNA levels of steroidogenesis-related genes, indicating long-term Cu exposure had toxic effect on the secretion of sex-steroid hormone in P. fulvidraco. For the first time, our study cloned cDNA sequences of ar, sf-1 and star in P. fulvidraco, and demonstrated the effects and mechanism of waterborne Cu exposure influencing hormones secretion and synthesis in dose- and time-dependent manner in P. fulvidraco, which will help to understand the Cu-induced reproductive toxicity at both protein and transcriptional levels in fish.
International Journal of Molecular Sciences | 2017
Yi-Huan Xu; Zhi Luo; Kun Wu; Yao-Fang Fan; Wen-Jing You; Li-Han Zhang
Carnitine palmitoyltransferase I (CPT I) is a key enzyme involved in the regulation of lipid metabolism and fatty acid β-oxidation. To understand the transcriptional mechanism of CPT Iα1b and CPT Iα2a genes, we cloned the 2695-bp and 2631-bp regions of CPT Iα1b and CPT Iα2a promoters of grass carp (Ctenopharyngodon idella), respectively, and explored the structure and functional characteristics of these promoters. CPT Iα1b had two transcription start sites (TSSs), while CPT Iα2a had only one TSS. DNase I foot printing showed that the CPT Iα1b promoter was AT-rich and TATA-less, and mediated basal transcription through an initiator (INR)-independent mechanism. Bioinformatics analysis indicated that specificity protein 1 (Sp1) and nuclear factor Y (NF-Y) played potential important roles in driving basal expression of CPT Iα2a gene. In HepG2 and HEK293 cells, progressive deletion analysis indicated that several regions contained cis-elements controlling the transcription of the CPT Iα1b and CPT Iα2a genes. Moreover, some transcription factors, such as thyroid hormone receptor (TR), hepatocyte nuclear factor 4 (HNF4) and peroxisome proliferator-activated receptor (PPAR) family, were all identified on the CPT Iα1b and CPT Iα2a promoters. The TRα binding sites were only identified on CPT Iα1b promoter, while TRβ binding sites were only identified on CPT Iα2a promoter, suggesting that the transcription of CPT Iα1b and CPT Iα2a was regulated by a different mechanism. Site-mutation and electrophoretic mobility-shift assay (EMSA) revealed that fenofibrate-induced PPARα activation did not bind with predicted PPARα binding sites of CPT I promoters. Additionally, PPARα was not the only member of PPAR family regulating CPT I expression, and PPARγ also regulated the CPT I expression. All of these results provided new insights into the mechanisms for transcriptional regulation of CPT I genes in fish.
General and Comparative Endocrinology | 2017
Mei-Qin Zhuo; Yan-Xiong Pan; Kun Wu; Yi-Huan Xu; Zhi Luo
In the present study, seven phosphoinositide 3-kinase (PI3K) members (PI3KCa, PI3KCb, PI3KCd, PI3KCg, PI3KC2a, PI3KC2b and PI3KC3, respectively) were isolated and characterized from yellow catfish Pelteobagrus fulvidraco, and their roles in insulin-induced changes of protein metabolism were determined. These seven PI3Ks can be divided into three classes, class I (including PI3KCa, PI3KCb, PI3KCd and PI3KCg), class II (including PI3KC2a and PI3KC2b) and class III (only including PI3KC3). Compared with mammals, all of these members share similar domain structure. Their mRNAs were widely expressed across ten tested tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, intestine, heart, kidney and ovary), but at variable levels. In the in vivo study, insulin treatment significantly increased hepatic protein content at 3h, accompanied with reduced plasma total amino acid contents and liver ALT activity, and with increased total RNA content and the mRNA levels of PI3KCb, PI3KC2a, AKT2, mTORC1 and S6K1 in liver. At 6h and 12h, insulin injection showed no significant effect on liver protein content and plasma total amino acid, but reduced liver ALT activity and increased liver total RNA and the mRNA levels of AKT2, mTORC1 and S6K1 in liver at 6h. In the in vitro study, insulin incubation also tended to increase protein content of hepatocytes, accompanied with reduced cell medium total amino acid contents and hepatocytes ALT activity, and increased total RNA content and the mRNA levels of PI3KCb, PI3KC2a, AKT2, mTORC1 and S6K1 in hepatocytes. However, insulin treatment showed no significant effect on GDH activity and mRNA expression of PI3KCa, PI3KCd, PI3KCg, PI3KC2b, PI3KC3 and eEF2 both in the in vivo and in vitro studies. Effects of insulin on the mRNA levels of eIF-4E and 4E-BP1 were different between the in vivo and in vitro studies, and also time-dependent. Compared to single insulin group, insulin+wortmannin group increased ALT activity at 6h but reduced T-RNA content at 6 and 12h. AKT2 and S6K1 mRNA levels at 6 and 12h, mRNA levels of mTORC1, 4E-BP1 and eEF2 at 3 and 6h, and EIF-4E mRNA levels at 3 and 12h, PI3KCb and PI3KC2a mRNA levels were significantly lower in insulin+wortmannin group than those in single insulin group. Thus, our study demonstrated that among seven PI3K members, PI3KCb and PI3KC2a were more sensitive to the insulin signaling pathway, and insulin stimulated hepatic protein synthesis in yellow catfish through PI3K signaling pathway.
The FASEB Journal | 2018
Chuan-Chuan Wei; Zhi Luo; Christer Hogstrand; Yi-Huan Xu; Li-Xiang Wu; Guang-Hui Chen; Ya-Xiong Pan; Yu-Feng Song
Zinc (Zn) deficiency is the most consistently discovered nutritional manifestations of fatty liver disease. Although Zn is known to stimulate hepatic lipid oxidation, little is known about its underlying mechanism of action in lipolysis. Given the potential role of lipophagy in lipid metabolism, the purpose of this study was to test the hypothesis that Zn attenuates hepatic lipid accumulation by modulating lipophagy. The present study indicated that Zn is a potent promoter of lipophagy. Zn administration significantly alleviated hepatocellular lipid accumulation and increased the release of free fatty acids in association with enhanced fatty acid oxidation and inhibited lipogenesis, which was accompanied by activation of autophagy. Moreover, Zn reduced lipid accumulation and stimulated lipolysis by autophagy‐mediated lipophagy. Zn‐induced up‐regulation of autophagy and lipid depletion is free Zn2+‐dependent in the cytosols. Zn‐induced autophagy and lipid turnover involved up‐regulation of the calcium/calmodulin‐dependent protein kinase kinase‐β (Ca2+/CaMKKβ)/AMPK pathway. Meanwhile, Zn2+‐activated autophagy and lipid depletion were via enhancing metal response element‐binding transcription factor (MTF)‐1 DNA binding at PPARα promoter region, which in turn induced transcriptional activation of the key genes related to autophagy and lipolysis. Zn activated the pathways of Zn2+/MTF‐1/ Peroxisome proliferator‐activated receptor (PPAR)α and Ca2+/CaMKKβ/AMPK, resulting in the up‐regulation of lipophagy and accordingly reduced hepatic lipid accumulation. Our study, for the first time, provided innovative evidence of the direct relationship between metal elements (Zn) and lipid metabolism. The present study also indicated the novel mechanism for Zn‐induced lipolysis by the activation of Zn2+/MTF‐1/PPARα and Ca2+/CaMKKβ/AMPK pathways, which induced the occurrence of lipophagy. These results provide new insight into Zn nutrition and its potential beneficial effects on the prevention of fatty liver disease in vertebrates.—Wei, C.‐C., Luo, Z., Hogstrand, C., Xu, Y.‐H., Wu, L.‐X., Chen, G.‐H., Pan, Y.‐X., Song, Y.‐F. Zinc reduces hepatic lipid deposition and activates lipophagy via Zn2+/MTF‐1/PPARα and Ca2+/CaMKKβ/AMPK pathways. FASEB J. 32, 6666–6680 (2018). www.fasebj.org
International Journal of Molecular Sciences | 2018
Mei-Qin Zhuo; Zhi Luo; Yi-Huan Xu; Dan-Dan Li; Ya-Xiong Pan; Kun Wu
In the present study, the length of 360, 1848 and 367 bp sequences of promoters from three subtypes of PI3K family (PI3KCa, PI3KC2b and PI3KC3) of yellow catfish Pelteobagrus fulvidraco were cloned and characterized. Bioinformatics analysis revealed that PI3KCa, PI3KC2b and PI3KC3 had different structures in their core promoter regions. The promoter regions of PI3KCa and PI3KC2b had CpG islands but no CAAT and TATA box. In contrast, the promoter of PI3KC3 had the canonical TATA and CAAT box but no CpG island. The binding sites of several transcription factors, such as HNF1, STAT and NF-κB, were predicted on PI3KCa promoter. The binding sites of transcription factors, such as FOXO1, PPAR-RXR, STAT, IK1, HNF6 and HNF3, were predicted on PI3KC2b promoter and the binding sites of FOXO1 and STAT transcription factors were predicted on PI3KC3 promoter. Deletion analysis indicated that these transcriptional factors were the potential regulators to mediate the activities of their promoters. Subsequent mutation analysis and electrophoretic mobility-shift assay (EMSA) demonstrated that HNF1 and IK1 directly bound with PI3KCa and PI3KC2b promoters and negatively regulated the activities of PI3KCa and PI3KC2b promoters, respectively. Conversely, FOXO1 directly bound with the PI3KC2b and PI3KC3 promoters and positively regulated their promoter activities. In addition, AS1842856 (AS, a potential FOXO1 inhibitor) incubation significantly reduced the relative luciferase activities of several plasmids of PI3KC2b and PI3KC3 but did not significantly influence the relative luciferase activities of the PI3KCa plasmids. Moreover, by using primary hepatocytes from yellow catfish, AS incubation significantly down-regulated the mRNA levels of PI3KCa, PI3KC2b and PI3KC3 and reduced triacylglyceride (TG) accumulation and insulin-induced TG accumulation, as well as the activities and the mRNA levels of several genes involved in lipid metabolism. Thus, the present study offers new insights into the mechanisms for transcriptional regulation of PI3Ks and for PI3Ks-mediated regulation of lipid metabolism by insulin in fish.