Yi Jin Liew
King Abdullah University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yi Jin Liew.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Sebastian Baumgarten; Oleg Simakov; Lisl Y. Esherick; Yi Jin Liew; Erik M. Lehnert; Craig T. Michell; Yong Li; Elizabeth A. Hambleton; Annika Guse; Matt E. Oates; Julian Gough; Virginia M. Weis; Manuel Aranda; John R. Pringle; Christian R. Voolstra
Significance Coral reefs form marine-biodiversity hotspots of enormous ecological, economic, and aesthetic importance that rely energetically on a functional symbiosis between the coral animal and a photosynthetic alga. The ongoing decline of corals worldwide due to anthropogenic influences, including global warming, ocean acidification, and pollution, heightens the need for an experimentally tractable model system to elucidate the molecular and cellular biology underlying the symbiosis and its susceptibility or resilience to stress. The small sea anemone Aiptasia is such a system, and our analysis of its genome provides a foundation for research in this area and has revealed numerous features of interest in relation to the evolution and function of the symbiotic relationship. The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between a cnidarian animal host (the coral) and intracellular photosynthetic dinoflagellate algae. The molecular and cellular mechanisms underlying this endosymbiosis are not well understood, in part because of the difficulties of experimental work with corals. The small sea anemone Aiptasia provides a tractable laboratory model for investigating these mechanisms. Here we report on the assembly and analysis of the Aiptasia genome, which will provide a foundation for future studies and has revealed several features that may be key to understanding the evolution and function of the endosymbiosis. These features include genomic rearrangements and taxonomically restricted genes that may be functionally related to the symbiosis, aspects of host dependence on alga-derived nutrients, a novel and expanded cnidarian-specific family of putative pattern-recognition receptors that might be involved in the animal–algal interactions, and extensive lineage-specific horizontal gene transfer. Extensive integration of genes of prokaryotic origin, including genes for antimicrobial peptides, presumably reflects an intimate association of the animal–algal pair also with its prokaryotic microbiome.
Scientific Reports | 2016
Manuel Aranda; Yangyang Li; Yi Jin Liew; Sebastian Baumgarten; Oleg Simakov; Micheal C. Wilson; Jörn Piel; Haitham Ashoor; Salim Bougouffa; Vladimir B. Bajic; Taewoo Ryu; Timothy Ravasi; Till Bayer; Gos Micklem; Hyung Seop Kim; J. Bhak; Todd C. LaJeunesse; Christian R. Voolstra
Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium.
eLife | 2016
Debashish Bhattacharya; Shobhit Agrawal; Manuel Aranda; Sebastian Baumgarten; Mahdi Belcaid; Jeana L. Drake; Douglas H. Erwin; Sylvain Forêt; Ruth D. Gates; David F. Gruber; Bishoy Kamel; Michael P. Lesser; Oren Levy; Yi Jin Liew; Matthew D. MacManes; Tali Mass; Mónica Medina; Shaadi Mehr; Eli Meyer; Dana C. Price; Hollie M. Putnam; Huan Qiu; Chuya Shinzato; Eiichi Shoguchi; Alexander J. Stokes; Sylvie Tambutté; Dan Tchernov; Christian R. Voolstra; Nicole E. Wagner; Charles W. Walker
Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years. DOI: http://dx.doi.org/10.7554/eLife.13288.001
PLOS ONE | 2014
Yi Jin Liew; Manuel Aranda; Adrian Carr; Sebastian Baumgarten; Didier Zoccola; Sylvie Tambutté; Denis Allemand; Gos Micklem; Christian R. Voolstra
Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways.
Database | 2016
Yi Jin Liew; Manuel Aranda; Christian R. Voolstra
Over the last decade, technological advancements have substantially decreased the cost and time of obtaining large amounts of sequencing data. Paired with the exponentially increased computing power, individual labs are now able to sequence genomes or transcriptomes to investigate biological questions of interest. This has led to a significant increase in available sequence data. Although the bulk of data published in articles are stored in public sequence databases, very often, only raw sequencing data are available; miscellaneous data such as assembled transcriptomes, genome annotations etc. are not easily obtainable through the same means. Here, we introduce our website (http://reefgenomics.org) that aims to centralize genomic and transcriptomic data from marine organisms. Besides providing convenient means to download sequences, we provide (where applicable) a genome browser to explore available genomic features, and a BLAST interface to search through the hosted sequences. Through the interface, multiple datasets can be queried simultaneously, allowing for the retrieval of matching sequences from organisms of interest. The minimalistic, no-frills interface reduces visual clutter, making it convenient for end-users to search and explore processed sequence data. Database URL: http://reefgenomics.org
BMC Genomics | 2016
Taewoo Ryu; Loqmane Seridi; Lucas Moitinho-Silva; Matthew Oates; Yi Jin Liew; Charalampos Harris Mavromatis; Xiaolei Wang; Annika Haywood; Feras F. Lafi; Marija Kupresanin; Rachid Sougrat; Majed Alzahrani; Emily Giles; Yanal Ghosheh; Celia Marei Schunter; Sebastian Baumgarten; Michael L. Berumen; Xin Gao; Manuel Aranda; Sylvain Forêt; Julian Gough; Christian R. Voolstra; Ute Hentschel; Timothy Ravasi
BackgroundSponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content.ResultsOur analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria.ConclusionsOur findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses.
PLOS Genetics | 2017
Yi Jin Liew; Yong Li; Sebastian Baumgarten; Christian R. Voolstra; Manuel Aranda
RNA editing is a rare post-transcriptional event that provides cells with an additional level of gene expression regulation. It has been implicated in various processes including adaptation, viral defence and RNA interference; however, its potential role as a mechanism in acclimatization has just recently been recognised. Here, we show that RNA editing occurs in 1.6% of all nuclear-encoded genes of Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. All base-substitution edit types were present, and statistically significant motifs were associated with three edit types. Strikingly, a subset of genes exhibited condition-specific editing patterns in response to different stressors that resulted in significant increases of non-synonymous changes. We posit that this previously unrecognised mechanism extends this organism’s capability to respond to stress beyond what is encoded by the genome. This in turn may provide further acclimatization capacity to these organisms, and by extension, their coral hosts.
Scientific Reports | 2017
Christian Voolstra; Yong Li; Yi Jin Liew; Sebastian Baumgarten; Didier Zoccola; Jean-François Flot; Sylvie Tambutté; Denis Allemand; Manuel Aranda
Stony corals form the foundation of coral reef ecosystems. Their phylogeny is characterized by a deep evolutionary divergence that separates corals into a robust and complex clade dating back to at least 245 mya. However, the genomic consequences and clade-specific evolution remain unexplored. In this study we have produced the genome of a robust coral, Stylophora pistillata, and compared it to the available genome of a complex coral, Acropora digitifera. We conducted a fine-scale gene-based analysis focusing on ortholog groups. Among the core set of conserved proteins, we found an emphasis on processes related to the cnidarian-dinoflagellate symbiosis. Genes associated with the algal symbiosis were also independently expanded in both species, but both corals diverged on the identity of ortholog groups expanded, and we found uneven expansions in genes associated with innate immunity and stress response. Our analyses demonstrate that coral genomes can be surprisingly disparate. Future analyses incorporating more genomic data should be able to determine whether the patterns elucidated here are not only characteristic of the differences between S. pistillata and A. digitifera but also representative of corals from the robust and complex clade at large.
Molecular Ecology Resources | 2017
Xin Wang; Yi Jin Liew; Yong Li; Didier Zoccola; Sylvie Tambutté; Manuel Aranda
Corallimorpharia are the closest noncalcifying relatives of reef‐building corals. Aside from their popularity among aquarium hobbyists, their evolutionary position between the Actiniaria (sea anemones) and the Scleractinia (hard corals) makes them ideal candidates for comparative studies aiming at understanding the evolution of hexacorallian orders in general and reef‐building corals in particular. Here we have sequenced and assembled two draft genomes for the Corallimorpharia species Amplexidiscus fenestrafer and Discosoma sp. The draft genomes encompass 370 and 445 Mbp, respectively, and encode for 21,372 and 23,199 genes. To facilitate future studies using these resources, we provide annotations for the predicted gene models—not only at gene level, by annotating gene models with the function of the best‐matching homologue, and GO terms when available; but also at protein domain level, where gene function can be better verified through the conservation of the sequence and order of protein domains. Further, we provide an online platform (http://corallimorpharia.reefgenomics.org), which includes a blast interface and a genome browser to facilitate the use of these resources. We believe that these two genomes are important resources for future studies on hexacorallian systematics and the evolutionary basis of their specific traits such as the symbiotic relationship with dinoflagellates of the genus Symbiodinium or the evolution of calcification in reef‐building corals.
BMC Microbiology | 2017
Jan D. Brüwer; Shobhit Agrawal; Yi Jin Liew; Manuel Aranda; Christian R. Voolstra
BackgroundStony corals provide the structural foundation of coral reef ecosystems and are termed holobionts given they engage in symbioses, in particular with photosynthetic dinoflagellates of the genus Symbiodinium. Besides Symbiodinium, corals also engage with bacteria affecting metabolism, immunity, and resilience of the coral holobiont, but the role of associated viruses is largely unknown. In this regard, the increase of studies using RNA sequencing (RNA-Seq) to assess gene expression provides an opportunity to elucidate viral signatures encompassed within the data via careful delineation of sequence reads and their source of origin.ResultsHere, we re-analyzed an RNA-Seq dataset from a cultured coral symbiont (Symbiodinium microadriaticum, Clade A1) across four experimental treatments (control, cold shock, heat shock, dark shock) to characterize associated viral diversity, abundance, and gene expression. Our approach comprised the filtering and removal of host sequence reads, subsequent phylogenetic assignment of sequence reads of putative viral origin, and the assembly and analysis of differentially expressed viral genes. About 15.46% (123 million) of all sequence reads were non-host-related, of which <1% could be classified as archaea, bacteria, or virus. Of these, 18.78% were annotated as virus and comprised a diverse community consistent across experimental treatments. Further, non-host related sequence reads assembled into 56,064 contigs, including 4856 contigs of putative viral origin that featured 43 differentially expressed genes during heat shock. The differentially expressed genes included viral kinases, ubiquitin, and ankyrin repeat proteins (amongst others), which are suggested to help the virus proliferate and inhibit the algal host’s antiviral response.ConclusionOur results suggest that a diverse viral community is associated with coral algal endosymbionts of the genus Symbiodinium, which prompts further research on their ecological role in coral health and resilience.