Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yi-Ping Jin is active.

Publication


Featured researches published by Yi-Ping Jin.


Journal of Immunology | 2008

HLA Class I Antibody-Mediated Endothelial Cell Proliferation via the mTOR Pathway

Peter T. Jindra; Yi-Ping Jin; Enquire Rozengurt; Elaine F. Reed

Anti-HLA Abs have been shown to contribute to the process of transplant vasculopathy by binding to HLA class I molecules expressed by the endothelial and smooth muscle cells of the graft and transducing intracellular signals that elicit cell proliferation. The aim of this study was to determine the role of mammalian target of rapamycin (mTOR) in HLA class I-induced endothelial cell proliferation and to explore in depth the relationship between mTOR complexes and their downstream targets following ligation of HLA class I molecules by anti-HLA Abs. We used small interfering RNA technology to abrogate mTOR, rapamycin-insensitive companion of mTOR (rictor), or regulatory associated protein of mTOR (raptor) to study the function of these gene products to activate proteins involved in MHC class I-induced cell proliferation and survival. Knockdown of mTOR inhibited class I-mediated phosphorylation of proteins downstream of mTOR complex 1 and mTOR complex 2. Furthermore, knockdown of mTOR, rictor, or raptor blocked HLA class I-induced endothelial cell proliferation. Long-term pretreatment with the mTOR inhibitor rapamycin significantly blocked both mTOR-raptor and mTOR-rictor complex formation. Interestingly, rapamycin also blocked class I-induced Akt phosphorylation at Ser473 and Bcl-2 expression. These results support the role of anti-HLA Abs in the process of transplant vasculopathy and suggest that exposure of the graft endothelium to anti-HLA Abs may promote proliferation through the mTOR pathway.


Journal of Immunology | 2002

Ligation of HLA Class I Molecules on Endothelial Cells Induces Phosphorylation of Src, Paxillin, and Focal Adhesion Kinase in an Actin-Dependent Manner

Yi-Ping Jin; Ram Pyare Singh; Zeying Du; Ayyappan K. Rajasekaran; Enrique Rozengurt; Elaine F. Reed

The development of chronic rejection is the major limitation to long-term allograft survival. HLA class I Ags have been implicated to play a role in this process because ligation of class I molecules by anti-HLA Abs stimulates smooth muscle cell and endothelial cell proliferation. In this study, we show that ligation of HLA class I molecules on the surface of human aortic endothelial cells stimulates phosphorylation of Src, focal adhesion kinase, and paxillin. Signaling through class I stimulated Src phosphorylation and mediated fibroblast growth factor receptor (FGFR) translocation to the nucleus. In contrast, Src kinase activity was not involved in class I-mediated transfer of FGFR from cytoplasmic stores to the cell surface. Inhibition of Src protein kinase activity blocked HLA class I-stimulated tyrosine phosphorylation of paxillin and focal adhesion kinase. Furthermore, HLA class I-mediated phosphorylation of the focal adhesion proteins and FGFR expression was inhibited by cytochalasin D and latrunculin A, suggesting a role for the actin cytoskeleton in the signaling process. These findings indicate that anti-HLA Abs have the capacity to transduce activation signals in endothelial cells that may promote the development of chronic rejection.


Transplantation | 2006

Anti-HLA antibodies can induce endothelial cell survival or proliferation depending on their concentration.

Peter T. Jindra; Xiaohai Zhang; Arend Mulder; Frans H.J. Claas; Jeffrey Veale; Yi-Ping Jin; Elaine F. Reed

Patients exhibiting a humoral immune response to the transplanted organ are at increased risk of antibody-mediated rejection and development of transplant vasculopathy. Historically, antibodies were thought to elicit transplant rejection through complement mediated damage of the endothelium of the graft. More recently, studies from our laboratory and others have shown that antibody ligation of class I molecules on the surface of endothelial cells transduces signals resulting in functional changes including expression of cell survival proteins and cell proliferation. The intracellular events initiated by antibody ligation are dependent upon the degree of molecular aggregation and influenced by the concentration of the antibody and level of human leukocyte antigen (HLA) expression. Herein we describe our recent findings on the effect of molecular aggregation on the class I signaling pathway in human endothelial cells.


Journal of Immunology | 2007

RNA interference elucidates the role of focal adhesion kinase in HLA class I-mediated focal adhesion complex formation and proliferation in human endothelial cells.

Yi-Ping Jin; Yael Korin; Xiaohai Zhang; Peter T. Jindra; Enrique Rozengurt; Elaine F. Reed

Ligation of class I molecules by anti-HLA Ab stimulates an intracellular signaling cascade resulting in endothelial cell (EC) survival and proliferation, and has been implicated in the process of chronic allograft rejection and transplant-associated vasculopathy. In this study, we used small interfering RNA blockade of focal adhesion kinase (FAK) protein to determine its role in class I-mediated organization of the actin cytoskeleton, cell survival, and cell proliferation in primary cultures of human aortic EC. Knockdown of FAK appreciably inhibited class I-mediated phosphorylation of Src at Tyr418, p85 PI3K, and Akt at both Thr308 and Ser473 sites. FAK knockdown also reduced class I-mediated phosphorylation of paxillin at Try118 and blocked class I-induced paxillin assembly into focal contacts. FAK small interfering RNA completely abrogated class I-mediated formation of actin stress fibers. Interestingly, FAK knockdown did not modify fibroblast growth factor receptor expression induced by class I ligation. However, FAK knockdown blocked HLA class I-stimulated cell cycle proliferation in the presence and absence of basic fibroblast growth factor. This study shows that FAK plays a critical role in class I-induced cell proliferation, cell survival, and focal adhesion assembly in EC and may promote the development of transplant-associated vasculopathy.


American Journal of Transplantation | 2014

Everolimus Inhibits Anti‐HLA I Antibody‐Mediated Endothelial Cell Signaling, Migration and Proliferation More Potently Than Sirolimus

Yi-Ping Jin; Nicole M. Valenzuela; Mary E. Ziegler; Enrique Rozengurt; Elaine F. Reed

Antibody (Ab) crosslinking of HLA I molecules on the surface of endothelial cells triggers proliferative and pro‐survival intracellular signaling, which is implicated in the process of chronic allograft rejection, also known as transplant vasculopathy (TV). The purpose of this study was to investigate the role of mammalian target of rapamycin (mTOR) in HLA I Ab‐induced signaling cascades. Everolimus provides a tool to establish how the mTOR signal network regulates HLA I–mediated migration, proliferation and survival. We found that everolimus inhibits mTOR complex 1 (mTORC1) by disassociating Raptor from mTOR, thereby preventing class I–induced phosphorylation of mTOR, p70S6K, S6RP and 4E‐BP1, and resultant class I–stimulated cell migration and proliferation. Furthermore, we found that everolimus inhibits class I–mediated mTORC2 activation (1) by disassociating Rictor and Sin1 from mTOR; (2) by preventing class I–stimulated Akt phosphorylation and (3) by preventing class I–mediated ERK phosphorylation. These results suggest that everolimus is more effective than sirolimus at antagonizing both mTORC1 and mTORC2, the latter of which is critical in endothelial cell functional changes leading to TV in solid organ transplantation after HLA I crosslinking. Our findings point to a potential therapeutic effect of everolimus in prevention of chronic Ab‐mediated rejection.


Human Immunology | 2011

Antibody ligation of human leukocyte antigen class I molecules stimulates migration and proliferation of smooth muscle cells in a focal adhesion kinase–dependent manner

Fang Li; Xiaohai Zhang; Yi-Ping Jin; Arend Mulder; Elaine F. Reed

Chronic rejection manifests as transplant vasculopathy, which is characterized by intimal thickening of the vessels of the allograft. Intimal thickening is thought to result from the migration and proliferation of vascular smooth muscle cells (SMC) in the vessel media, followed by deposition of extracellular matrix proteins. The development of post-transplantation anti-human leukocyte antigen (HLA) antibodies (Ab) is strongly correlated with the development of transplant vasculopathy and graft loss. Here we demonstrate that cross-linking of HLA class I molecules on the surface of human SMC with anti-HLA class I Ab induced cell proliferation and migration. Class I ligation also increased phosphorylation of focal adhesion kinase (FAK), Akt, and ERK1/2 in SMC. Knockdown of FAK by siRNA attenuated class I-induced phosphorylation of Akt and ERK1/2, as well as cell proliferation and migration. These results indicate that ligation of HLA class I molecules induces SMC migration and proliferation in a FAK-dependent manner, which may be important in promoting transplant vasculopathy.


PLOS ONE | 2012

Characterization of the Endothelial Cell Cytoskeleton following HLA Class I Ligation

Mary E. Ziegler; Puneet Souda; Yi-Ping Jin; Julian P. Whitelegge; Elaine F. Reed

Background Vascular endothelial cells (ECs) are a target of antibody-mediated allograft rejection. In vitro, when the HLA class I molecules on the surface of ECs are ligated by anti-HLA class I antibodies, cell proliferation and survival pathways are activated and this is thought to contribute to the development of antibody-mediated rejection. Crosslinking of HLA class I molecules by anti-HLA antibodies also triggers reorganization of the cytoskeleton, which induces the formation of F-actin stress fibers. HLA class I induced stress fiber formation is not well understood. Methodology and Principal Findings The present study examines the protein composition of the cytoskeleton fraction of ECs treated with HLA class I antibodies and compares it to other agonists known to induce alterations of the cytoskeleton in endothelial cells. Analysis by tandem mass spectrometry revealed unique cytoskeleton proteomes for each treatment group. Using annotation tools a candidate list was created that revealed 12 proteins, which were unique to the HLA class I stimulated group. Eleven of the candidate proteins were phosphoproteins and exploration of their predicted kinases provided clues as to how these proteins may contribute to the understanding of HLA class I induced antibody-mediated rejection. Three of the candidates, eukaryotic initiation factor 4A1 (eIF4A1), Tropomyosin alpha 4-chain (TPM4) and DDX3X, were further characterized by Western blot and found to be associated with the cytoskeleton. Confocal microscopy analysis showed that class I ligation stimulated increased eIF4A1 co-localization with F-actin and paxillin. Conclusions/Significance Colocalization of eIF4A1 with F-actin and paxillin following HLA class I ligation suggests that this candidate protein could be a target for understanding the mechanism(s) of class I mediated antibody-mediated rejection. This proteomic approach for analyzing the cytoskeleton of ECs can be applied to other agonists and various cells types as a method for uncovering novel regulators of cytoskeleton changes.


American Journal of Physiology-cell Physiology | 2012

HLA class I-mediated stress fiber formation requires ERK1/2 activation in the absence of an increase in intracellular Ca2+ in human aortic endothelial cells

Mary E. Ziegler; Yi-Ping Jin; Steven H. Young; Enrique Rozengurt; Elaine F. Reed

Following transplantation, HLA class I antibodies targeting donor endothelium stimulate cell proliferation and migration, which contribute to the development of transplant vasculopathy and chronic allograft rejection. Dynamic remodeling of the actin cytoskeleton regulates cell proliferation and migration in endothelial cells (ECs), but the mechanism(s) involved remain incompletely understood. We explored anti-HLA class I antibody-mediated alterations of the cytoskeleton in human aortic ECs (HAECs) and contrasted these findings to thrombin-induced cytoskeleton remodeling. Our results identify two different signaling pathways leading to myosin light chain (MLC) phosphorylation in HAECs. Stimulation of HAECs with thrombin at 1 U/ml induced a robust elevation of intracellular Ca(2+) concentration, increased MLC phosphorylation, and promoted stress fiber formation via MLC kinase (MLCK) and Rho kinase (ROK) in an ERK-independent manner. In contrast, HAECs stimulated with HLA class I antibodies did not promote any detectable change in intracellular Ca(2+) concentration but instead induced MLC phosphorylation and stress fiber assembly via MLCK and ROK in an ERK1/2-dependent manner. Stimulation of HAECs with low-dose thrombin (1 mU/ml) induced signaling cascades that were similar to stimulation with HLA class I antibodies. HLA class I antibodies also stimulated the translocation of mammalian target of rapamycin complex 2 (mTORC2) and ERK1/2 from the cytoplasm to the plasma membrane independently of stress fiber assembly. These findings identify novel roles for HLA class I signaling in ECs and provide new insights into the role of ERK1/2 and mTORC2 in cytoskeleton regulation, which may be important in promoting transplant vasculopathy, tumor angiogenesis, and atherosclerosis.


Journal of Immunology | 2018

HLA Class II–Triggered Signaling Cascades Cause Endothelial Cell Proliferation and Migration: Relevance to Antibody-Mediated Transplant Rejection

Yi-Ping Jin; Nicole M. Valenzuela; Xiaohai Zhang; Enrique Rozengurt; Elaine F. Reed

Transplant recipients developing donor-specific HLA class II (HLA-II) Abs are at higher risk for Ab-mediated rejection (AMR) and transplant vasculopathy. To understand how HLA-II Abs cause AMR and transplant vasculopathy, we determined the signaling events triggered in vascular endothelial cells (EC) following Ab ligation of HLA-II molecules. HLA-II expression in EC was induced by adenoviral vector expression of CIITA or by pretreatment with TNF-α/IFN-γ. Ab ligation of class II stimulated EC proliferation and migration. Class II Ab also induced activation of key signaling nodes Src, focal adhesion kinase, PI3K, and ERK that regulated downstream targets of the mammalian target of rapamycin (mTOR) pathway Akt, p70 ribosomal S6 kinase, and S6 ribosomal protein. Pharmacological inhibitors and small interfering RNA showed the protein kinases Src, focal adhesion kinase, PI3K/Akt, and MEK/ERK regulate class II Ab-stimulated cell proliferation and migration. Treatment with rapalogs for 2 h did not affect HLA-II Ab-induced phosphorylation of ERK; instead, mTOR complex (mTORC)1 targets were dependent on activation of ERK. Importantly, suppression of mTORC2 for 24 h with rapamycin or everolimus or treatment with mTOR active-site inhibitors enhanced HLA-II Ab-stimulated phosphorylation of ERK. Furthermore, knockdown of Rictor with small interfering RNA caused overactivation of ERK while abolishing phosphorylation of Akt Ser473 induced by class II Ab. These data are different from HLA class I Ab-induced activation of ERK, which is mTORC2-dependent. Our results identify a complex signaling network triggered by HLA-II Ab in EC and indicate that combined ERK and mTORC2 inhibitors may be required to achieve optimal efficacy in controlling HLA-II Ab-mediated AMR.


American Journal of Transplantation | 2018

Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection

Sahar Salehi; Rebecca A. Sosa; Yi-Ping Jin; Shoichi Kageyama; Michael C. Fishbein; Enrique Rozengurt; Jerzy W. Kupiec-Weglinski; Elaine F. Reed

Antibody‐mediated rejection (AMR) resulting in transplant allograft vasculopathy (TAV) is the major obstacle for long‐term survival of solid organ transplants. AMR is caused by donor‐specific antibodies to HLA, which contribute to TAV by initiating outside‐in signaling transduction pathways that elicit monocyte recruitment to activated endothelium. Mechanistic target of rapamycin (mTOR) inhibitors can attenuate TAV; therefore, we sought to understand the mechanistic underpinnings of mTOR signaling in HLA class I Ab–mediated endothelial cell activation and monocyte recruitment. We used an in vitro model to assess monocyte binding to HLA I Ab–activated endothelial cells and found mTOR inhibition reduced ezrin/radixin/moesin (ERM) phosphorylation, intercellular adhesion molecule 1 (ICAM‐1) clustering, and monocyte firm adhesion to HLA I Ab–activated endothelium. Further, in a mouse model of AMR, in which C57BL/6. RAG1−/− recipients of BALB/c cardiac allografts were passively transferred with donor‐specific MHC I antibodies, mTOR inhibition significantly reduced vascular injury, ERM phosphorylation, and macrophage infiltration of the allograft. Taken together, these studies indicate mTOR inhibition suppresses ERM phosphorylation in endothelial cells, which impedes ICAM‐1 clustering in response to HLA class I Ab and prevents macrophage infiltration into cardiac allografts. These findings indicate a novel therapeutic application for mTOR inhibitors to disrupt endothelial cell‐monocyte interactions during AMR.

Collaboration


Dive into the Yi-Ping Jin's collaboration.

Top Co-Authors

Avatar

Elaine F. Reed

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaohai Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arend Mulder

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Frans H.J. Claas

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nwe Nwe Soe

University of California

View shared research outputs
Top Co-Authors

Avatar

Eric J. Lepin

University of California

View shared research outputs
Top Co-Authors

Avatar

Fang Li

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge