Yi Wai Chiang
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yi Wai Chiang.
Journal of Environmental Management | 2012
Yi Wai Chiang; Rafael M. Santos; Karel Ghyselbrecht; Valérie Cappuyns; Johan A. Martens; Rudy Swennen; T. Van Gerven; Boudewijn Meesschaert
Aquatic sediments contaminated with heavy metals originating from mining and metallurgical activities pose significant risk to the environment and human health. These sediments not only act as a sink for heavy metals, but can also constitute a secondary source of heavy metal contamination. A variety of sorbent materials has demonstrated the potential to immobilize heavy metals. However, the complexity of multi-element contamination makes choosing the appropriate sorbent mixture and application dosage highly challenging. In this paper, a strategic framework is designed to systematically address the development of an in-situ sediment remediation solution through Assessment, Feasibility and Performance studies. The decision making tools and the experimental procedures needed to identify optimum sorbent mixtures are detailed. Particular emphasis is given to the utilization and combination of commercially available and waste-derived sorbents to enhance the sustainability of the solution. A specific case study for a contaminated sediment site in Northern Belgium with high levels of As, Cd, Pb and Zn originating from historical non-ferrous smelting is presented. The proposed framework is utilized to achieve the required remediation targets and to meet the imposed regulations on material application in natural environments.
Chemsuschem | 2014
Yi Wai Chiang; Rafael M. Santos; Kenneth Vanduyfhuys; Boudewijn Meesschaert; Johan A. Martens
Bottom ashes produced from municipal solid-waste incineration are suitable for sorbent synthesis because of their inherent composition, high alkalinity, metastable mineralogy, and residual heat. This work shows that bottom ashes can be atom-efficiently converted into valuable sorbents without the need for costly and hazardous chemicals. The ashes were hydrothermally treated in rotary autoclaves at autogenic pH conditions to promote the conversion of precursor mineral phases into zeolites and layered silicate hydrates. Two main mineral phases were formed: katoite and sodium aluminum phosphate silicate hydrate. These mineral alterations are accompanied by a tenfold increase in specific surface area and a twofold reduction in average particle size. Performance evaluation of the new sorbents for Cd(2+), Zn(2+), and Pb(2+) adsorption at pH5 indicates sorption capacities of 0.06, 0.08, and 0.22 mmol g(-1), respectively, which are similar to those of natural adsorbents and synthetic materials obtained from more demanding synthesis conditions.
The Scientific World Journal | 2014
Marius Bodor; Rafael M. Santos; Yi Wai Chiang; Maria Vlad; Tom Van Gerven
This work presents experimental results regarding the use of pure nickel nanoparticles (NiNP) as a mineral carbonation additive. The aim was to confirm if the catalytic effect of NiNP, which has been reported to increase the dissolution of CO2 and the dissociation of carbonic acid in water, is capable of accelerating mineral carbonation processes. The impacts of NiNP on the CO2 mineralization by four alkaline materials (pure CaO and MgO, and AOD and CC steelmaking slags), on the product mineralogy, on the particle size distribution, and on the morphology of resulting materials were investigated. NiNP-containing solution was found to reach more acidic pH values upon CO2 bubbling, confirming a higher quantity of bicarbonate ions. This effect resulted in acceleration of mineral carbonation in the first fifteen minutes of reaction time when NiNP was present. After this initial stage, however, no benefit of NiNP addition was seen, resulting in very similar carbonation extents after one hour of reaction time. It was also found that increasing solids content decreased the benefit of NiNP, even in the early stages. These results suggest that NiNP has little contribution to mineral carbonation processes when the dissolution of alkaline earth metals is rate limiting.
Bioinorganic Chemistry and Applications | 2015
Annick Monballiu; Nele Cardon; Minh Tri Nguyen; Christel Cornelly; Boudewijn Meesschaert; Yi Wai Chiang
The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials.
Journal of Visualized Experiments | 2017
Evangelos Georgakopoulos; Rafael M. Santos; Yi Wai Chiang; Vasilije Manovic
The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (<2 wt% non-calcium impurities, according to ICP-MS analysis). Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni2+, as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications.
Chemical Engineering Journal | 2012
Yi Wai Chiang; Karel Ghyselbrecht; Rafael M. Santos; Johan A. Martens; Rudy Swennen; Valérie Cappuyns; Boudewijn Meesschaert
Catalysis Today | 2012
Yi Wai Chiang; Karel Ghyselbrecht; Rafael M. Santos; Boudewijn Meesschaert; Johan A. Martens
Minerals Engineering | 2013
Yi Wai Chiang; Rafael M. Santos; Annick Monballiu; Karel Ghyselbrecht; Johan A. Martens; M. L. T. Mattos; Tom Van Gerven; Boudewijn Meesschaert
Energies | 2016
Ramy Gamgoum; Animesh Dutta; Rafael M. Santos; Yi Wai Chiang
Minerals | 2014
Yi Wai Chiang; Rafael M. Santos; Aldo Van Audenaerde; Annick Monballiu; Tom Van Gerven; Boudewijn Meesschaert