Yi-Wei Lee
University of Massachusetts Amherst
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yi-Wei Lee.
ACS Nano | 2015
Ying Jiang; Shuaidong Huo; Tsukasa Mizuhara; Riddha Das; Yi-Wei Lee; Singyuk Hou; Daniel F. Moyano; Bradley Duncan; Xing-Jie Liang; Vincent M. Rotello
Correlation of the surface physicochemical properties of nanoparticles with their interactions with biosystems provides key foundational data for nanomedicine. We report here the systematic synthesis of 2, 4, and 6 nm core gold nanoparticles (AuNP) featuring neutral (zwitterionic), anionic, and cationic headgroups. The cellular internalization of these AuNPs was quantified, providing a parametric evaluation of charge and size effects. Contrasting behavior was observed with these systems: with zwitterionic and anionic particles, uptake decreased with increasing AuNP size, whereas with cationic particles, uptake increased with increasing particle size. Through mechanistic studies of the uptake process, we can attribute these opposing trends to a surface-dictated shift in uptake pathways. Zwitterionic NPs are primarily internalized through passive diffusion, while the internalization of cationic and anionic NPs is dominated by multiple endocytic pathways. Our study demonstrates that size and surface charge interact in an interrelated fashion to modulate nanoparticle uptake into cells, providing an engineering tool for designing nanomaterials for specific biological applications.
ACS Nano | 2017
Rubul Mout; Moumita Ray; Gulen Yesilbag Tonga; Yi-Wei Lee; Tristan Tay; Kanae Sasaki; Vincent M. Rotello
Genome editing through the delivery of CRISPR/Cas9-ribonucleoprotein (Cas9-RNP) reduces unwanted gene targeting and avoids integrational mutagenesis that can occur through gene delivery strategies. Direct and efficient delivery of Cas9-RNP into the cytosol followed by translocation to the nucleus remains a challenge. Here, we report a remarkably highly efficient (∼90%) direct cytoplasmic/nuclear delivery of Cas9 protein complexed with a guide RNA (sgRNA) through the coengineering of Cas9 protein and carrier nanoparticles. This construct provides effective (∼30%) gene editing efficiency and opens up opportunities in studying genome dynamics.
ACS Nano | 2017
Ryan F. Landis; Akash Gupta; Yi-Wei Lee; Li-Sheng Wang; Bianka Golba; Brice Couillaud; Roxane Ridolfo; Riddha Das; Vincent M. Rotello
Infections caused by bacterial biofilms are an emerging threat to human health. Conventional antibiotic therapies are ineffective against biofilms due to poor penetration of the extracellular polymeric substance secreted by colonized bacteria coupled with the rapidly growing number of antibiotic-resistant strains. Essential oils are promising natural antimicrobial agents; however, poor solubility in biological conditions limits their applications against bacteria in both dispersed (planktonic) and biofilm settings. We report here an oil-in-water cross-linked polymeric nanocomposite (∼250 nm) incorporating carvacrol oil that penetrates and eradicates multidrug-resistant (MDR) biofilms. The therapeutic potential of these materials against challenging wound biofilm infections was demonstrated through specific killing of bacteria in a mammalian cell-biofilm coculture wound model.
Bioconjugate Chemistry | 2017
Rubul Mout; Moumita Ray; Yi-Wei Lee; Federica Scaletti; Vincent M. Rotello
The successful use of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-based gene editing for therapeutics requires efficient in vivo delivery of the CRISPR components. There are, however, major challenges on the delivery front. In this Topical Review, we will highlight recent developments in CRISPR delivery, and we will present hurdles that still need to be overcome to achieve effective in vivo editing.
ACS Nano | 2016
Singyuk Hou; Kristen N. Sikora; Rui Tang; Yuanchang Liu; Yi-Wei Lee; Sung Tae Kim; Ziwen Jiang; Richard W. Vachet; Vincent M. Rotello
Differentiation between cell surface-bound and internalized nanoparticles is challenging yet essential for accurately quantifying cellular uptake. Here, we describe a versatile mass spectrometry-based method that allows separate quantification of both cell surface-bound and internalized nanoparticles. This rapid method uses tuned laser fluencies to selectively desorb and ionize cell surface-bound cationic gold nanoparticles from intact cells, providing quantification of external particles. Overall nanoparticle quantities are obtained from the cell lysates, with subtraction of external particles from the total amount providing quantification of taken-up nanoparticles. The utility of this strategy was demonstrated through simultaneous quantitative determination of how cell-surface proteoglycans influence nanoparticle binding and uptake into cells.
Nanomedicine: Nanotechnology, Biology and Medicine | 2017
Moumita Ray; Yi-Wei Lee; Federica Scaletti; Ruijin Yu; Vincent M. Rotello
Intracellular delivery of proteins is potentially a game-changing approach for therapeutics. However, for most applications, the protein needs to access the cytosol to be effective. A wide variety of strategies have been developed for protein delivery, however access of delivered protein to the cytosol without acute cytotoxicity remains a critical issue. In this review we discuss recent trends in protein delivery using nanocarriers, focusing on the ability of these strategies to deliver protein into the cytosol.
ACS Applied Materials & Interfaces | 2017
Li-Sheng Wang; Bradley Duncan; Rui Tang; Yi-Wei Lee; Brian Creran; Sukru Gokhan Elci; Jiaxin Zhu; Gulen Yesilbag Tonga; Jesse Doble; Matthew Fessenden; Mahin Bayat; Stephen S. Nonnenmann; Richard W. Vachet; Vincent M. Rotello
Protein-based biomaterials provide versatile scaffolds for generating functional surfaces for biomedical applications. However, tailoring the functional and biological properties of protein films remains a challenge. Here, we describe a high-throughput method to designing stable, functional biomaterials by combining inkjet deposition of protein inks with a nanoimprint lithography based methodology. The translation of the intrinsically charged proteins into functional materials properties was demonstrated through controlled cellular adhesion. This modular strategy offers a rapid method to produce customizable biomaterials.
Materials horizons | 2018
Li-Sheng Wang; Sanjana Gopalakrishnan; Yi-Wei Lee; Jiaxin Zhu; Stephen S. Nonnenmann; Vincent M. Rotello
Protein-based materials provide an inherently biocompatible and sustainable platform for the generation of functional materials. Translating protein properties into protein films resistant to aqueous degradation is crucial for most applications such as tissue engineering and controlled drug delivery. Current methods to stabilize protein films use three main strategies: employing the relatively limited variety of naturally self-assembling proteins, using added cross-linkers or heat curing. While the cross-linking strategy generates functionally diverse structures, unreacted additives retained in cross-linked protein films can adversely affect their final behavior. Traditional heat curing results in hydrophobic surface and loss of protein inherent properties. We demonstrate here a scalable, additive-free, fluorous media assisted thermal treatment for the fabrication of stable, hydrophilic protein films. This approach is general in terms of protein building block, retaining much of their native structure and surface properties upon heating. We demonstrate the versatility of this strategy through fabrication of antifouling coatings on complex three-dimensional surfaces. The utility of these films as biomaterials is highlighted through the generation of highly biocompatible non-fouling surfaces and regulation of cellular adhesion through choice of protein precursor.
Journal of the American Chemical Society | 2018
Ryan F. Landis; Cheng-Hsuan Li; Akash Gupta; Yi-Wei Lee; Mahdieh Yazdani; Nipaporn Ngernyuang; Ismail Altinbasak; Sanaa Mansoor; Muhammadaha A. S. Khichi; Amitav Sanyal; Vincent M. Rotello
Infections caused by multidrug-resistant (MDR) bacteria are a rapidly growing threat to human health, in many cases exacerbated by their presence in biofilms. We report here a biocompatible oil-in-water cross-linked polymeric nanocomposite that degrades in the presence of physiologically relevant biomolecules. These degradable nanocomposites demonstrated broad-spectrum penetration and elimination of MDR bacteria, eliminating biofilms with no toxicity to cocultured mammalian fibroblast cells. Notably, serial passaging revealed that bacteria were unable to develop resistance toward these nanocomposites, highlighting the therapeutic promise of this platform.
Expert Opinion on Drug Delivery | 2018
D.C. Luther; Yi-Wei Lee; H. Nagaraj; Federica Scaletti; Vincent M. Rotello
ABSTRACT Introduction: Therapeutic gene editing is becoming a viable biomedical tool with the emergence of the CRISPR/Cas9 system. CRISPR-based technologies have promise as a therapeutic platform for many human genetic diseases previously considered untreatable, providing a flexible approach to high-fidelity gene editing. For many diseases, such as sickle-cell disease and beta thalassemia, curative therapy may already be on the horizon, with CRISPR-based clinical trials slated for the next few years. Translation of CRISPR-based therapy to in vivo application however, is no small feat, and major hurdles remain for efficacious use of the CRISPR/Cas9 system in clinical contexts. Areas covered: In this topical review, we highlight recent advances to in vivo delivery of the CRISPR/Cas9 system using various packaging formats, including viral, mRNA, plasmid, and protein-based approaches. We also discuss some of the barriers which have yet to be overcome for successful translation of this technology. Expert opinion: This review focuses on the challenges to efficacy for various delivery formats, with specific emphasis on overcoming these challenges through the development of carrier vehicles for transient approaches to CRISPR/Cas9 delivery in vivo.