Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yi Ye is active.

Publication


Featured researches published by Yi Ye.


Molecular Cancer Therapeutics | 2011

Nerve growth factor links oral cancer progression, pain, and cachexia.

Yi Ye; Dongmin Dang; Jianan Zhang; Chi Tonglien Viet; David K. Lam; John C. Dolan; Jennifer L. Gibbs; Brian L. Schmidt

Cancers often cause excruciating pain and rapid weight loss, severely reducing quality of life in cancer patients. Cancer-induced pain and cachexia are often studied and treated independently, although both symptoms are strongly linked with chronic inflammation and sustained production of proinflammatory cytokines. Because nerve growth factor (NGF) plays a cardinal role in inflammation and pain, and because it interacts with multiple proinflammatory cytokines, we hypothesized that NGF acts as a key endogenous molecule involved in the orchestration of cancer-related inflammation. NGF might be a molecule common to the mechanisms responsible for clinically distinctive cancer symptoms such as pain and cachexia as well as cancer progression. Here we reported that NGF was highly elevated in human oral squamous cell carcinoma tumors and cell cultures. Using two validated mouse cancer models, we further showed that NGF blockade decreased tumor proliferation, nociception, and weight loss by orchestrating proinflammatory cytokines and leptin production. NGF blockade also decreased expression levels of nociceptive receptors TRPV1, TRPA1, and PAR-2. Together, these results identified NGF as a common link among proliferation, pain, and cachexia in oral cancer. Anti-NGF could be an important mechanism-based therapy for oral cancer and its related symptoms. Mol Cancer Ther; 10(9); 1667–76. ©2011 AACR.


Pain | 2011

Re-expression of the methylated EDNRB gene in oral squamous cell carcinoma attenuates cancer-induced pain

Chi T. Viet; Yi Ye; Dongmin Dang; David K. Lam; Stacy H. Achdjian; Jianan Zhang; Brian L. Schmidt

Summary Epigenetic silencing by methylation is a novel mechanism regulating cancer‐induced pain. Re‐expression of the hypermethylated EDNRB gene produces an antinociceptive effect in a mouse model. Abstract Endothelin‐1 is a vasoactive peptide that activates both the endothelin A (ETA) and endothelin B (ETB) receptors, and is secreted in high concentrations in many different cancer environments. Although ETA receptor activation has an established nociceptive effect in cancer models, the role of ETB receptors on cancer pain is controversial. EDNRB, the gene encoding the ETB receptor, has been shown to be hypermethylated and transcriptionally silenced in many different cancers. In this study we demonstrate that EDNRB is heavily methylated in human oral squamous cell carcinoma lesions, which are painful, but not methylated in human oral dysplasia lesions, which are typically not painful. ETB mRNA expression is reduced in the human oral squamous cell carcinoma lesions as a consequence of EDNRB hypermethylation. Using a mouse cancer pain model, we show that ETB receptor re‐expression attenuates cancer‐induced pain. These findings identify EDNRB methylation as a novel regulatory mechanism in cancer‐induced pain and suggest that demethylation therapy targeted at the cancer microenvironment has the potential to thwart pain‐producing mechanisms at the source, thus freeing patients of systemic analgesic toxicity.


The Journal of Pain | 2012

Analgesia targeting IB4-positive neurons in cancer-induced mechanical hypersensitivity

Yi Ye; Dongmin Dang; Chi T. Viet; John C. Dolan; Brian L. Schmidt

UNLABELLED Cancer patients often suffer from pain and most will be prescribed μ-opioids. μ-opioids are not satisfactory in treating cancer pain and are associated with multiple debilitating side effects. Recent studies show that μ and δ opioid receptors are separately expressed on IB4 (-) and IB4 (+) neurons, which control thermal and mechanical pain, respectively. In this study we investigated IB4 (+) and IB4 (-) neurons in mechanical and thermal hypersensitivity in an orthotopic mouse oral cancer model. We used a δ opioid receptor agonist and a P2X(3) antagonist to target IB4 (+) neurons and to demonstrate that this subset plays a key role in cancer-induced mechanical allodynia, but not in thermal hyperalgesia. Moreover, selective removal of IB4 (+) neurons using IB4-saporin impacts cancer-induced mechanical but not thermal hypersensitivity. Our results demonstrate that peripherally administered pharmacological agents targeting IB4 (+) neurons, such as a selective δ-opioid receptor agonist or P2X(3) antagonist, might be useful in treating oral cancer pain. PERSPECTIVE To clarify the mechanisms of oral cancer pain, we examined the differential role of IB4 (+) and IB4 (-) neurons. Characterization of these 2 subsets of putative nociceptors is important for further development of effective clinical cancer pain relief.


Acta neuropathologica communications | 2014

Adenosine triphosphate drives head and neck cancer pain through P2X2/3 heterotrimers

Yi Ye; Kentaro Ono; Daniel Galera Bernabé; Chi T. Viet; Victoria Pickering; John C. Dolan; Markus Hardt; Anthony P Ford; Brian L. Schmidt

IntroductionCancer pain creates a poor quality of life and decreases survival. The basic neurobiology of cancer pain is poorly understood. Adenosine triphosphate (ATP) and the ATP ionotropic receptor subunits, P2X2 and P2X3, mediate cancer pain in animal models; however, it is unknown whether this mechanism operates in human, and if so, what the relative contribution of P2X2- and P2X3-containing trimeric channels to cancer pain is. Here, we studied head and neck squamous cell carcinoma (HNSCC), which causes the highest level of function-induced pain relative to other types of cancer.ResultsWe show that the human HNSCC tissues contain significantly increased levels of ATP compared to the matched normal tissues. The high levels of ATP are secreted by the cancer and positively correlate with self-reported function-induced pain in patients. The human HNSCC microenvironment is densely innervated by nerve fibers expressing both P2X2 and P2X3 subunits. In animal models of HNSCC we showed that ATP in the cancer microenvironment likely heightens pain perception through the P2X2/3 trimeric receptors. Nerve growth factor (NGF), another cancer-derived pain mediator found in both human and mouse HNSCC, induces P2X2 and P2X3 hypersensitivity and increases subunit expression in murine trigeminal ganglion (TG) neurons.ConclusionsThese data identify a key peripheral mechanism in cancer pain and highlight the clinical potential of specifically targeting nociceptors expressing both P2X2 and P2X3 subunits (e.g., P2X2/3 heterotrimers) to alleviate cancer pain.


PLOS ONE | 2014

Decitabine rescues cisplatin resistance in head and neck squamous cell carcinoma.

Chi T. Viet; Dongmin Dang; Stacy Achdjian; Yi Ye; Samuel G. Katz; Brian L. Schmidt

Cisplatin resistance in head and neck squamous cell carcinoma (HNSCC) reduces survival. In this study we hypothesized that methylation of key genes mediates cisplatin resistance. We determined whether a demethylating drug, decitabine, could augment the anti-proliferative and apoptotic effects of cisplatin on SCC-25/CP, a cisplatin-resistant tongue SCC cell line. We showed that decitabine treatment restored cisplatin sensitivity in SCC-25/CP and significantly reduced the cisplatin dose required to induce apoptosis. We then created a xenograft model with SCC-25/CP and determined that decitabine and cisplatin combination treatment resulted in significantly reduced tumor growth and mechanical allodynia compared to control. To establish a gene classifier we quantified methylation in cancer tissue of cisplatin-sensitive and cisplatin-resistant HNSCC patients. Cisplatin-sensitive and cisplatin-resistant patient tumors had distinct methylation profiles. When we quantified methylation and expression of genes in the classifier in HNSCC cells in vitro, we showed that decitabine treatment of cisplatin-resistant HNSCC cells reversed methylation and gene expression toward a cisplatin-sensitive profile. The study provides direct evidence that decitabine restores cisplatin sensitivity in in vitro and in vivo models of HNSCC. Combination treatment of cisplatin and decitabine significantly reduces HNSCC growth and HNSCC pain. Furthermore, gene methylation could be used as a biomarker of cisplatin-resistance.


Clinical Cancer Research | 2014

Demethylating Drugs as Novel Analgesics for Cancer Pain

Chi T. Viet; Dongmin Dang; Yi Ye; Kentaro Ono; Ronald R. Campbell; Brian L. Schmidt

Purpose: In this study, we evaluated the analgesic potential of demethylating drugs on oral cancer pain. Although demethylating drugs could affect expression of many genes, we focused on the mu-opioid receptor (OPRM1) gene pathway, because of its role in pain processing. We determined the antinociceptive effect of OPRM1 re-expression in a mouse oral cancer model. Experimental Design: Using a mouse oral cancer model, we determined whether demethylating drugs produced antinociception through re-expression of OPRM1. We then re-expressed OPRM1 with adenoviral transduction and determined if, and by what mechanism, OPRM1 re-expression produced antinociception. To determine the clinical significance of OPRM1 on cancer pain, we quantified OPRM1 methylation in painful cancer tissues and nonpainful contralateral normal tissues of patients with oral cancer, and nonpainful dysplastic tissues of patients with oral dysplasia. Results: We demonstrated that OPRM1 was methylated in cancer tissue, but not normal tissue, of patients with oral cancer, and not in dysplastic tissues from patients with oral dysplasia. Treatment with demethylating drugs resulted in mechanical and thermal antinociception in the mouse cancer model. This behavioral change correlated with OPRM1 re-expression in the cancer and associated neurons. Similarly, adenoviral-mediated OPRM1 re-expression on cancer cells resulted in naloxone-reversible antinociception. OPRM1 re-expression on oral cancer cells in vitro increased β-endorphin secretion from the cancer, and decreased activation of neurons that were treated with cancer supernatant. Conclusion: Our study establishes the regulatory role of methylation in cancer pain. OPRM1 re-expression in cancer cells produces antinociception through cancer-mediated endogenous opioid secretion. Demethylating drugs have an analgesic effect that involves OPRM1. Clin Cancer Res; 20(18); 4882–93. ©2014 AACR.


Behavioral and Brain Functions | 2014

IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma

Yi Ye; Sam Seoho Bae; Chi T. Viet; Scott H. Troob; Daniel Galera Bernabé; Brian L. Schmidt

BackgroundCancer pain severely limits function and significantly reduces quality of life. Subtypes of sensory neurons involved in cancer pain and proliferation are not clear.MethodsWe produced a cancer model by inoculating human oral squamous cell carcinoma (SCC) cells into the hind paw of athymic mice. We quantified mechanical and thermal nociception using the paw withdrawal assays. Neurotoxins isolectin B4-saporin (IB4-SAP), or capsaicin was injected intrathecally to selectively ablate IB4(+) neurons or TRPV1(+) neurons, respectively. JNJ-17203212, a TRPV1 antagonist, was also injected intrathecally. TRPV1 protein expression in the spinal cord was quantified with western blot. Paw volume was measured by a plethysmometer and was used as an index for tumor size. Ki-67 immunostaining in mouse paw sections was performed to evaluate cancer proliferation in situ.ResultsWe showed that mice with SCC exhibited both mechanical and thermal hypersensitivity. Selective ablation of IB4(+) neurons by IB4-SAP decreased mechanical allodynia in mice with SCC. Selective ablation of TRPV1(+) neurons by intrathecal capsaicin injection, or TRPV1 antagonism by JNJ-17203212 in the IB4-SAP treated mice completely reversed SCC-induced thermal hyperalgesia, without affecting mechanical allodynia. Furthermore, TRPV1 protein expression was increased in the spinal cord of SCC mice compared to normal mice. Neither removal of IB4(+) or TRPV1(+) neurons affected SCC proliferation.ConclusionsWe show in a mouse model that IB4(+) neurons play an important role in cancer-induced mechanical allodynia, while TRPV1 mediates cancer-induced thermal hyperalgesia. Characterization of the sensory fiber subtypes responsible for cancer pain could lead to the development of targeted therapeutics.


Journal of Neurophysiology | 2015

TRPV1 expression level in isolectin B4-positive neurons contributes to mouse strain difference in cutaneous thermal nociceptive sensitivity

Kentaro Ono; Yi Ye; Chi Tongalien Viet; Dongmin Dang; Brian L. Schmidt

Differential thermal nociception across inbred mouse strains has genetic determinants. Thermal nociception is largely attributed to the heat/capsaicin receptor transient receptor potential vanilloid 1 (TRPV1); however, the contribution of this channel to the genetics of thermal nociception has not been revealed. In this study we compared TRPV1 expression levels and electrophysiological properties in primary sensory neurons and thermal nociceptive behaviors between two (C57BL/6 and BALB/c) inbred mouse strains. Using immunofluorescence and patch-clamp physiology methods, we demonstrated that TRPV1 expression was significantly higher in isolectin B4 (IB4)-positive trigeminal sensory neurons of C57BL/6 relative to BALB/c; the expression in IB4-negative neurons was similar between the strains. Furthermore, using electrophysiological cell classification (current signature method), we showed differences between the two strains in capsaicin sensitivity in IB4-positive neuronal cell types 2 and 13, which were previously reported as skin nociceptors. Otherwise electrophysiological membrane properties of the classified cell types were similar in the two mouse strains. In publicly available nocifensive behavior data and our own behavior data from the using the two mouse strains, C57BL/6 exhibited higher sensitivity to heat stimulation than BALB/c, independent of sex and anatomical location of thermal testing (the tail, hind paw, and whisker pad). The TRPV1-selective antagonist JNJ-17203212 inhibited thermal nociception in both strains; however, removing IB4-positive trigeminal sensory neurons with IB4-conjugated saporin inhibited thermal nociception on the whisker pad in C57BL/6 but not in BALB/c. These results suggest that TRPV1 expression levels in IB4-positive type 2 and 13 neurons contributed to differential thermal nociception in skin of C57BL/6 compared with BALB/c.


Pain | 2017

Ex vivo nonviral gene delivery of μ-opioid receptor to attenuate cancer-induced pain.

Seiichi Yamano; Chi T. Viet; Dongmin Dang; Jisen Dai; Shigeru Hanatani; Tadahiro Takayama; Hironori Kasai; Kentaro Imamura; Ron Campbell; Yi Ye; John C. Dolan; William Myung Kwon; Stefan D. Schneider; Brian L. Schmidt

Abstract Virus-mediated gene delivery shows promise for the treatment of chronic pain. However, viral vectors have cytotoxicity. To avoid toxicities and limitations of virus-mediated gene delivery, we developed a novel nonviral hybrid vector: HIV-1 Tat peptide sequence modified with histidine and cysteine residues combined with a cationic lipid. The vector has high transfection efficiency with little cytotoxicity in cancer cell lines including HSC-3 (human tongue squamous cell carcinoma) and exhibits differential expression in HSC-3 (∼45-fold) relative to HGF-1 (human gingival fibroblasts) cells. We used the nonviral vector to transfect cancer with OPRM1, the &mgr;-opioid receptor gene, as a novel method for treating cancer-induced pain. After HSC-3 cells were transfected with OPRM1, a cancer mouse model was created by inoculating the transfected HSC-3 cells into the hind paw or tongue of athymic mice to determine the analgesic potential of OPRM1 transfection. Mice with HSC-3 tumors expressing OPRM1 demonstrated significant antinociception compared with control mice. The effect was reversible with local naloxone administration. We quantified &bgr;-endorphin secretion from HSC-3 cells and showed that HSC-3 cells transfected with OPRM1 secreted significantly more &bgr;-endorphin than control HSC-3 cells. These findings indicate that nonviral delivery of the OPRM1 gene targeted to the cancer microenvironment has an analgesic effect in a preclinical cancer model, and nonviral gene delivery is a potential treatment for cancer pain.


Pain | 2017

Tumor necrosis factor alpha secreted from oral squamous cell carcinoma contributes to cancer pain and associated inflammation

Nicole N. Scheff; Yi Ye; Aditi Bhattacharya; Justin MacRae; Dustin N. Hickman; Atul K. Sharma; John C. Dolan; Brian L. Schmidt

Abstract Patients with oral cancer report severe pain during function. Inflammation plays a role in the oral cancer microenvironment; however, the role of immune cells and associated secretion of inflammatory mediators in oral cancer pain has not been well defined. In this study, we used 2 oral cancer mouse models: a cell line supernatant injection model and the 4-nitroquinoline-1-oxide (4NQO) chemical carcinogenesis model. We used the 2 models to study changes in immune cell infiltrate and orofacial nociception associated with oral squamous cell carcinoma (oSCC). Oral cancer cell line supernatant inoculation and 4NQO-induced oSCC resulted in functional allodynia and neuronal sensitization of trigeminal tongue afferent neurons. Although the infiltration of immune cells is a prominent component of both oral cancer models, our use of immune-deficient mice demonstrated that oral cancer–induced nociception was not dependent on the inflammatory component. Furthermore, the inflammatory cytokine, tumor necrosis factor alpha (TNF&agr;), was identified in high concentration in oral cancer cell line supernatant and in the tongue tissue of 4NQO-treated mice with oSCC. Inhibition of TNF&agr; signaling abolished oral cancer cell line supernatant-evoked functional allodynia and disrupted T-cell infiltration. With these data, we identified TNF&agr; as a prominent mediator in oral cancer–induced nociception and inflammation, highlighting the need for further investigation in neural–immune communication in cancer pain.

Collaboration


Dive into the Yi Ye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kentaro Ono

Kyushu Dental University

View shared research outputs
Top Co-Authors

Avatar

David K. Lam

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge