Yi-Yuan Peng
Jiangxi Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yi-Yuan Peng.
Toxicology in Vitro | 2011
Naihao Lu; Puqing Chen; Qin Yang; Yi-Yuan Peng
Evidence to support the role of heme proteins as major inducers of oxidative damage is increasingly present. Flavonoids have been widely used to ameliorate oxidative damage in vivo and in vitro, where the mechanism of this therapeutic action was usually dependent on their anti-oxidant effects. In this study, we investigated the influence of (+)-catechin, a polyphenol identified in tea, cocoa, and red wine, on hemoglobin-induced protein oxidative damage. It was found that (+)-catechin had the capacities to act as a free radical scavenger and reducing agent to remove cytotoxic ferryl hemoglobin, demonstrating apparent anti-oxidant activities. However, the presence of (+)-catechin surprisingly promoted hemoglobin-induced protein oxidation, which was probably due to the ability of this anti-oxidant to rapidly trigger the oxidative degradation of normal hemoglobin. In addition, hemoglobin-H2O2-induced protein carbonyl formation was significantly enhanced by (+)-catechin at lower concentrations, while it was efficiently inhibited when higher concentrations were used. These novel results showed that the dietary intake and therapeutic use of catechins might possess pro-oxidant activity through aggravating hemoglobin-related oxidative damage. The dual effects on hemoglobin redox reactions may provide new insights into the physiological implications of tea extract and wine (catechins) with cellular heme proteins.
Clinica Chimica Acta | 2015
Naihao Lu; Shiliang Xie; Jiayu Li; Rong Tian; Yi-Yuan Peng
BACKGROUND It is demonstrated that levels of protein-bound chlorotyrosine, nitrotyrosine and myeloperoxidase (MPO), a protein that catalyzes generation of chlorinating and nitrating oxidants, serve as independent predictors of cardiovascular disease. METHODS Immunoprecipitation and Western blot were used to analyze protein concentration, nitration and chlorination. LC-MS/MS was used to identify nitrated and chlorinated sites of Tyr from immunoprecipitated serum proteins. RESULTS Apolipoprotein A-I (apoA-I), the primary protein constituent of high density lipoprotein (HDL), was identified as a selective target for MPO-catalyzed nitration and chlorination in patients with type 2 diabetes. The serum proteins from diabetic subjects showed that the levels of apoA-I nitration and chlorination were clearly increased, whereas apoA-I concentration and cholesterol efflux activity were significantly decreased. MPO as a likely mechanism for oxidative modification of apoA-I in vivo was apparently facilitated by MPO binding to apoA-I. Subsequently, it was found that Tyr 192 was the major nitration and chlorination site in apoA-I from diabetic serum. Further studies in vitro revealed that besides the classic inhibition in cholesterol efflux activities, MPO-catalyzed oxidation could result in a loss of anti-apoptotic activity of lipoprotein. CONCLUSIONS ApoA-I undergoes MPO-mediated oxidation in serum from diabetic patients compared to non-diabetic subjects and MPO-catalyzed modification may impair the anti-apoptotic properties of HDL in vitro.
Toxicology in Vitro | 2014
Naihao Lu; Yingjie He; Chao Chen; Rong Tian; Qiang Xiao; Yi-Yuan Peng
The toxic mechanism of hemoglobin (Hb) under oxidative stress is linked to the formations of highly cytotoxic ferryl species and subsequently heme-to-protein cross-linked derivative of Hb (Hb-X). In this study, we have examined the effects of free tyrosine and its analogues (3-chlorotyrosine, phenylalanine) on the stability of ferryl hemoglobin and the formation of Hb-X. The results showed that free tyrosine (not phenylalanine, 10-500 μM) was an efficient reducing agent of ferryl species and also effective at preventing the formation of cytotoxic Hb-X. Meanwhile, the dimeric tyrosine was formed as the oxidation product of tyrosine during Hb redox reaction. Compared with free tyrosine, 3-chlorotyrosine, an oxidation product of tyrosine and a proposed biomarker for hypochlorous acid (HOCl) in vivo, exhibited stronger antioxidant properties in Hb-induced oxidative stress, which was consistent with its more efficient ability in the reduction of ferryl species. These results showed that the presence of tyrosine and its derivative in vivo and vitro could ameliorate oxidative damage through ferryl heme reduction. The antioxidant ability, therefore, may provide new insights into the nutritional and physiological significance of free tyrosine with redox active heme proteins-related oxidative stress.
Journal of Agricultural and Food Chemistry | 2017
Rong Tian; Yun Ding; Yi-Yuan Peng; Naihao Lu
Myeloperoxidase (MPO) plays important roles in various diseases through its unique chlorinating activity to catalyze excess hypochlorous acid (HOCl) formation. Epidemiological studies indicate an inverse correlation between plant polyphenol consumption and the incidence of cardiovascular diseases. Here we showed that (-)-epigallocatechin gallate (EGCG), the main flavonoid present in green tea, dose-dependently inhibited MPO-mediated HOCl formation in vitro (chlorinating activities of MPO: 50.2 ± 5.7% for 20 μM EGCG versus 100 ± 5.6% for control, P < 0.01). UV-vis spectral and docking studies indicated that EGCG bound to the active site (heme) of MPO and resulted in the accumulation of compound II, which was unable to produce HOCl. This flavonoid also effectively inhibited HOCl generation in activated neutrophils (HOCl formation: 65.0 ± 5.6% for 20 μM EGCG versus 100 ± 6.2% for control, P < 0.01) without influencing MPO and Nox2 release and superoxide formation, suggesting that EGCG specifically inhibited MPO but not NADPH oxidase activity in activated neutrophils. Moreover, EGCG inhibited MPO (or neutrophil)-mediated HOCl formation in human umbilical vein endothelial cells (HUVEC) culture and accordingly protected HUVEC from MPO (or neutrophil)-induced injury (P < 0.05, all cases), although it did not induce cytotoxicity to HUVEC (P > 0.05, all cases). Our results indicate that dietary EGCG is an effective and specific inhibitor of MPO activity and may participate in the regulation of immune responses at inflammatory sites.
International Journal of Biological Macromolecules | 2017
Wei-Ming Chai; Mei-Zhen Lin; Fang-Jun Song; Ying-Xia Wang; Kai-Li Xu; Jin-Xin Huang; Jian-Ping Fu; Yi-Yuan Peng
In this study, the inhibitory effect and mechanism of rifampicin on the activity of tyrosinase were investigated for developing a novel tyrosinase inhibitor. It was found to have a significant inhibition on the activity of tyrosinase (IC50=90±0.6μM). From the kinetics analysis, it was proved to be a reversible and noncompetitive type inhibitor of the enzyme with the KI value of 94±3.5μM. The results obtained from intrinsic fluorescence quenching indicated that rifampicin could interact with tyrosinase. In particular, the drastic decrease of fluorescence intensity was due to the formation of a rifampicin-enzyme complex in a static procedure which was mainly driven by hydrophobic forces and hydrogen bonding. Moreover, the ANS-binding fluorescence analysis suggested that rifampicin binding to tyrosinase changed the polarity of the hydrophobic regions. Molecular docking analysis further revealed that the hydrogen bonds were generated between rifampicin and amino residues Leu7, Ser52, and Glu107 in the B chain of the enzyme. And the hydrophobic forces produced through the interaction of rifampicin with B chain residues Pro9, Pro14, and Trp106. This work identified a novel tyrosinase inhibitor and potentially contributed to the usage of rifampicin as a potential hyperpigmentation drug.
European Journal of Pharmacology | 2016
Naihao Lu; Yun Ding; Rong Tian; Yi-Yuan Peng
Myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) is elevated in many neurodegenerative diseases, and lead to severe tissue injuries. Nitrite (NO2(-)) is a widespread inorganic molecule that has recently been proposed as a direct NO donor to exert antioxidant properties in vivo and vitro. Since NO2(-) and MPO (and/or HOCl) were important mediators in brain function and disease, we investigated the effects of NO2(-) on MPO-mediated damage to human neuroblastoma SH-SY5Y cells. Here, we showed that exposure of SH-SY5Y cells to MPO (or HOCl) resulted in a significant loss in viability, ATP and glutathione levels, and treatment of neuronal cells with NO2(-) substantially attenuated MPO (or HOCl)-dependent cellular toxicity. The protective effects of NO2(-) on MPO (or HOCl)-induced cytotoxicity were because that (1) NO2(-) at high concentrations competed effectively with Cl(-) for MPO, thus limiting OCl(-) production by the enzyme; (2) HOCl was removed by reacting with NO2(-), forming less damaging compound; (3) NO2(-) significantly inhibited MPO-mediated inactivation of brain protein (enolase) and protein oxidation. Therefore, NO2(-) could show novel protective effects in some neurodegenerative diseases by preventing MPO-mediated oxidative damage.
European Journal of Pharmacology | 2015
Naihao Lu; Qin Yang; Jiayu Li; Rong Tian; Yi-Yuan Peng
It has been suggested that the aggregation and cytotoxicity of amyloid-β (Aβ) peptide with transition-metal ions in neuronal cells is involved in the development and progression of Alzheimers disease (AD). As the most abundant protein in blood plasma and in cerebrospinal fluid, human serum albumin (HSA) can bind Aβ in vivo and subsequently inhibit Aβ fibril growth. However, the roles of albumin in Cu-induced Aβ aggregation and toxicity, and its potential biological relevance to AD therapy, were not stressed enough. Here, we showed that HSA was capable of binding Cu (I) with much higher affinity than Aβ, competitively inhibiting the interaction of Aβ and Cu ions. In the presence of biological reducing agent ascorbate, HSA inhibited Cu (II)/Cu (I)-mediated Aβ40 aggregation, reactive oxygen species production, and neurotoxicity. However, in the absence of Cu (II)/Cu (I), HSA could not effectively inhibit Aβ40 aggregation and neurotoxicity at 24 h (or less) incubation time, but decreased Aβ40 aggregation at much longer incubation (120 h). Our data suggested that through competitively decreasing Cu-Aβ interaction, HSA could effectively inhibit Cu (II)/Cu (I)-induced Aβ40 aggregation and neurotoxicity, and play important roles in regulating redox balance as well as metal homeostasis in AD prevention and therapy.
Toxicology in Vitro | 2012
Naihao Lu; Wei Chen; Jingjie Zhu; Yi-Yuan Peng
Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins.
Food Research International | 2017
Wei-Ming Chai; Mei-Zhen Lin; Ying-Xia Wang; Kai-Li Xu; Wen-Yang Huang; Dan-Dan Pan; Zheng-Rong Zou; Yi-Yuan Peng
In this study, the structure of proanthocyanidins purified from cherimoya (Annona squamosa) pericarp was analyzed by ESI-QTOF-MS and HPLC analyses. The result indicated that these compounds were procyanidin-type proanthocyanidins, consisting mainly of (epi)catechin units linked b y B-type interflavan bonds. The analyses of enzymology showed that the activities of monophenolase and diphenolase of tyrosinase could be powerfully inhibited by the proanthocyanidins. Further researches on the inhibition mechanism demonstrated that they were reversible and competitive inhibitors with the KI value of 27.1±3.1μg/mL. These inhibitors quenched the fluorescence of tyrosinase through a static quenching mechanism and spontaneously formed proanthocyanidins-enzyme complex. Fluorescence changes of proanthocyanidins in the presence of copper ion suggested that the interactions could reduce the fluorescence intensity of these polymers and the molecular docking analysis revealed that copper irons of the enzyme could be chelated by adjacent hydroxyl groups on the B ring of proanthocyanidins. Moreover, proanthocyanidins were proved to be efficient quencher of substrates. These results would lay scientific foundation for their farther application in food and medicine industry.
Chemico-Biological Interactions | 2015
Naihao Lu; Jiayu Li; Xiaoming Ren; Rong Tian; Yi-Yuan Peng
Hypochlorous acid (HOCl) is elevated in many inflammatory diseases and causes the accumulation of free iron. Through the Fenton reaction, free iron has the ability to generate free radicals and subsequently is toxic. Recent studies have demonstrated that HOCl participates in heme destruction of hemoglobin (Hb) and free iron release. In this study, it was showed that nitrite (NO2(-)) could prevent HOCl-mediated Hb heme destruction and free iron release. Also, NO2(-) prevented HOCl-mediated loss of Hb peroxidase activity. After the NO2(-)/HOCl treatment, Tyr 42 in α-chain was found to be nitrated in Hb, attenuating the electron transferring abilities of phenolic compounds. The protective effects of NO2(-) on HOCl-induced heme destruction were attributed to its reduction of ferryl Hb and/or direct scavenging of HOCl. Therefore, NO2(-) could show protective effects in some inflammatory diseases by preventing HOCl-mediated heme destruction of hemoproteins and free iron release.